Page Proof

Journal of Algebra and Its Applications
 Vol. 16, No. 1 (2017) 1750013 (21 pages)
 © World Scientific Publishing Company
 DOI: 10.1142/S021949881750013X

On (m, n)-closed ideals of commutative rings 5 David F. Anderson 6 7 Department of Mathematics The University of Tennessee 8 Knoxville, TN 37996-1320, USA 9 10 and erson@math.utk.edu11 Ayman Badawi Department of Mathematics & Statistics 12 The American University of Sharjah 13 P. O. Box 26666, Sharjah, United Arab Emirates 14 abadawi@aus.edu15 Received 27 July 2015 16 Accepted 28 December 2015 17 18 Published Communicated by 19 20 Let R be a commutative ring with $1 \neq 0$, and let I be a proper ideal of R. Recall that 21 I is an n-absorbing ideal if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$, then there are n of the x_i 's whose product is in I. We define I to be a semi-n-absorbing ideal if 22 23 $x^{n+1} \in I$ for $x \in R$ implies $x^n \in I$. More generally, for positive integers m and n, we define I to be an (m, n)-closed ideal if $x^m \in I$ for $x \in R$ implies $x^n \in I$. A number of 24 25 examples and results on (m, n)-closed ideals are discussed in this paper. Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal. 26 Mathematics Subject Classification: Primary: 13A15; Secondary: 13F05, 13G05 27

28 1. Introduction

Let R be a commutative ring with $1 \neq 0$, I a proper ideal of R, and n a positive 29 integer. As in [1], I is called an *n*-absorbing ideal of R if whenever $x_1 \cdots x_{n+1} \in I$ 30 for $x_1, \ldots, x_{n+1} \in R$, then there are n of the x_i 's whose product is in I. Thus a 31 1-absorbing ideal is just a prime ideal. In this paper, we define I to be a *semi*-32 *n-absorbing ideal* of R if $x^{n+1} \in I$ for $x \in R$ implies $x^n \in I$. Clearly, an n-absorbing 33 ideal is also a semi-n-absorbing ideal, and a semi-1-absorbing ideal is just a rad-34 ical (semiprime) ideal. Hence *n*-absorbing (respectively, semi-*n*-absorbing) ideals 35 generalize prime (respectively, radical) ideals. More generally, for positive inte-36 gers m and n, we define I to be an (m, n)-closed ideal of R if $x^m \in I$ for $x \in R$ 37

1 implies $x^n \in I$. Thus I is a semi-*n*-absorbing ideal if and only if I is an (n + 1, n)-2 closed ideal, and I is a radical ideal if and only if I is a (2, 1)-closed ideal. In fact, 3 an *n*-absorbing ideal is (m, n)-closed for every positive integer m. Clearly, a proper 4 ideal is (m, n)-closed for $1 \le m \le n$; so we often assume that $1 \le n < m$.

5 The concept of 2-absorbing ideals was introduced in [6] and then extended to 6 *n*-absorbing ideals in [1]. Several related concepts, such as 2-absorbing primary 7 ideals, have been studied in [7–10, 16]. Other generalizations of prime ideals are 8 investigated in [3–5, 11].

9 In Sec. 2, we give the basic properties of semi-*n*-absorbing ideals and (m, n)closed ideals. We also determine when every proper ideal of R is (m, n)-closed for 10 integers $1 \le n < m$. In Sec. 3, we specialize to the case of principal ideals in integral 11 domains. For an integral domain R, we determine $\mathcal{R}(I) = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid I \text{ is }$ 12 (m, n)-closed} for $I = p_1^{k_1} \cdots p_i^{k_i} R$, where p_1, \ldots, p_i are nonassociate prime elements 13 of R and k_1, \ldots, k_i are positive integers. In Sec. 4, we continue the study of (m, n)-14 closed ideals and give several examples to illustrate earlier results. For a proper ideal 15 I of R, we investigate the two functions f_I and g_I defined by $f_I(m) = \min\{n \mid I \text{ is } n \in I\}$ 16 (m, n)-closed} and $g_I(n) = \sup\{m \mid I \text{ is } (m, n)\text{-closed}\}.$ 17

We assume throughout that all rings are commutative with $1 \neq 0$ and that 18 f(1) = 1 for all ring homomorphisms $f : R \to T$. For such a ring R, dim(R) 19 denotes the Krull dimension of R, \sqrt{I} denotes the radical of an ideal I of R, and 20 $\operatorname{nil}(R)$, Z(R), and U(R) denote the set of nilpotent elements, zero-divisors, and 21 units of R, respectively; and R is reduced if $nil(R) = \{0\}$. Recall that R is von 22 Neumann regular if for every $x \in R$, there is a $y \in R$ such that $x^2y = x$, and that 23 R is π -regular if for every $x \in R$, there are $y \in R$ and a positive integer n such that 24 $x^{2n}y = x^n$. Moreover, R is π -regular (respectively, von Neumann regular) if and 25 only if $\dim(R) = 0$ (respectively, R is reduced and $\dim(R) = 0$) ([13, Theorem 3.1, 26 p. 10]). Thus R is π -regular if and only if $R/\operatorname{nil}(R)$ is von Neumann regular. As 27 usual, $\mathbb{N}, \mathbb{Z}, \mathbb{Z}_n$, and \mathbb{Q} will denote the positive integers, integers, integers modulo 28 n, and rational numbers, respectively. For any undefined concepts or terminology, 29 see [12, 13], or [14]. 30

31 2. Properties of (m, n)-Closed Ideals

We start with the following observations and examples. Recall that if M_1, \ldots, M_n are maximal ideals of R, then $M_1 \cdots M_n$ is an *n*-absorbing ideal of R ([1, Theorem 2.9]); an analogous result holds for semi-*n*-absorbing ideals.

- 35 **Theorem 2.1.** Let R be a commutative ring.
- 36 (1) A radical ideal of R is (m, n)-closed for all positive integers m and n.
- (2) An n-absorbing ideal of R is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed
 ideal) of R for every positive integer n.
- 39 (3) An (m, n)-closed ideal of R is (m', n')-closed for all positive integers $m' \le m$ 40 and $n' \ge n$.

 $On \; (m,n) \text{-} closed \; ideals \; of \; commutative \; rings$

1 2 3	 (4) An n-absorbing ideal of R is (m,n)-closed for every positive integer m. (5) Let P₁,, P_k be radical ideals of R. Then P₁ ··· P_k is (m,n)-closed for all integers m ≥ 1 and n ≥ min{m,k}. In particular, P₁ ··· P_k is a semi-k-absorbing
4	ideal (i.e. $(k+1,k)$ -closed ideal) of R.
5	Proof. (1) – (3) follow directly from the definitions.
6	(4) Let I be an n -absorbing ideal of R for n a positive integer. Suppose that
7	$x^m \in I$ for $x \in R$ and $m > n$ an integer. Then $x^n \in R$ by [1, Theorem 2.1(a)]; so I
8	is (m, n) -closed for $m > n$. Clearly, I is (m, n) -closed for every integer $1 \le m \le n$;
9	so I is (m, n) -closed for every positive integer m. (5) Let $x^m \in P_1 \cdots P_k$ for $x \in R$. Then $x^m \in P_i$ for every $1 \le i \le k$, and thus
10 11	$x \in P_i$ since P_i is a radical ideal of R . Hence $x^k \in P_1 \cdots P_k$; so $x^n \in P_1 \cdots P_k$ for
12	$n \ge \min\{m, k\}.$
13	The following examples show that for every integer $n \ge 2$, there is a semi-n-
14	absorbing ideal (i.e. $(n + 1, n)$ -closed ideal) that is neither a radical ideal nor an
15 16	<i>n</i> -absorbing ideal, and that there is an ideal that is not a semi- <i>n</i> -absorbing ideal (i.e. $(n + 1, n)$ -closed ideal) for any positive integer <i>n</i> .
17	Example 2.2. (a) Let $R = \mathbb{Z}$, $n \ge 2$ an integer, and $I = 2 \cdot 3^n \mathbb{Z}$. Then I is a
18	semi-n-absorbing ideal (i.e. $(n+1, n)$ -closed ideal) of R by Theorem 2.1(5) (let
19	$P_1 = 6\mathbb{Z}$ and $P_2 = \cdots = P_n = 3\mathbb{Z}$). In fact, I is a semi-m-absorbing ideal for
20	every integer $m \ge n$. However, $(2 \cdot 3^{n-1})^2 \in I$ and $2 \cdot 3^{n-1} \notin I$; so I is not a
21	radical ideal of R. Moreover, $2 \cdot 3^n \in I$, $3^n \notin I$, and $2 \cdot 3^{n-1} \notin I$; so I is not an
22	<i>n</i> -absorbing ideal of R (but, I is an $(n + 1)$ -absorbing ideal of R). Note that
23 24	for $n = 1$, $I = 6\mathbb{Z}$ is a semi-1-absorbing ideal (i.e. radical ideal) of R , but not a 1-absorbing ideal (i.e. prime ideal) of R .
05	
25	(b) Let $R = \mathbb{Q}[\{X_n\}_{n \in \mathbb{N}}]$ and $I = (\{X_n^n\}_{n \in \mathbb{N}})$. Then $X_{n+1}^{n+1} \in I$ and $X_{n+1}^n \notin I$ for every positive integer n ; so I is not a semi- n -absorbing ideal (i.e. $(n+1, n)$ -
26 27	closed ideal) for any positive integer n. Thus I is (m, n) -closed if and only if
28	$1 \le m \le n.$
29	(c) Let R be a commutative Noetherian ring. Then every proper ideal of R is
30	an n -absorbing ideal of R , and hence a semi- n -absorbing ideal of R , for some
31	positive integer n ([1, Theorem 5.3]). Thus, by Theorem 2.1(4), for every proper
32	ideal I of R, there is a positive integer n such that I is (m, n) -closed for every
33	positive integer m . Note that the ring in (b) is not Noetherian.
34	(d) Clearly, an <i>n</i> -absorbing ideal of R is also an $(n + 1)$ -absorbing ideal of R .
35	However, this need not be true for semi- n -absorbing ideals. For example, it is
36	easily seen that $I = 16\mathbb{Z}$ is a semi-2-absorbing ideal (i.e. $(3, 2)$ -closed ideal) of
37	\mathbb{Z} , but not a semi-3-absorbing ideal (i.e. (4, 3)-closed ideal) of \mathbb{Z} .
38	(e) Let R be a valuation domain. Then a radical ideal of R is also a prime ideal of R
39	R ([12, Theorem 17.1]), i.e. a semi-1-absorbing ideal of R is a 1-absorbing ideal of R . However, a semi-in-absorbing ideal of R need not be an n absorbing ideal
40	of R . However, a semi- n -absorbing ideal of R need not be an n -absorbing ideal

1 2 3	of R for $n \ge 2$. For example, let $R = \mathbb{Z}_{(2)}$ and $I = 16\mathbb{Z}_{(2)}$. Then R is a DVR, and it is easily verified that I is a semi-2-absorbing ideal (i.e. $(3, 2)$ -closed ideal) of R , but not a 2-absorbing ideal of R .
4 5 6	In general, a product of (m, n) -closed ideals need not be (m, n) -closed (e.g. a product of radical ideals need not be a radical ideal). The next result generalizes Theorem $2.1(5)$ (also, see Theorem $4.1(9)$).
7 8	Theorem 2.3. Let R be a commutative ring, $m_1, \ldots, m_k, n_1, \ldots, n_k$ positive integers, and I_1, \ldots, I_k be ideals of R such that I_i is (m_i, n_i) -closed for $1 \le i \le k$.
9 10 11 12	 I₁ ∩ · · · ∩ I_k is (m, n)-closed for all positive integers m ≤ min{m₁,,m_k} and n ≥ min{m,max{n₁,,n_k}}. I₁ · · · I_k is (m, n)-closed for all positive integers m ≤ min{m₁,,m_k} and n ≥ min{m, n₁ + · · · + n_k}.
13 14 15 16	Proof. (1) Let $x^m \in I_1 \cap \cdots \cap I_k$ for $x \in R$, $m \leq \min\{m_1, \ldots, m_k\}$, and $1 \leq i \leq k$. Then $x^m \in I_i$, and thus $x^{m_i} \in I_i$; so $x^{n_i} \in I_i$ since I_i is (m_i, n_i) -closed. Hence $x^n \in I_1 \cap \cdots \cap I_k$ for $n \geq \max\{n_1, \ldots, n_k\}$. Thus $x^n \in I_1 \cap \cdots \cap I_k$ for $n \geq \min\{m, \max\{n_1, \ldots, n_k\}\}$.
17 18 19 20	(2) Let $x^m \in I_1 \cdots I_k$ for $x \in R$, $m \le \min\{m_1, \dots, m_k\}$, and $1 \le i \le k$. Then $x^m \in I_i$, and thus $x^{m_i} \in I_i$; so $x^{n_i} \in I_i$ since I_i is (m_i, n_i) -closed. Hence $x^{n_1 + \dots + n_k} \in I_1 \cdots I_k$; so $x^n \in I_1 \cdots I_k$ for $n \ge n_1 + \dots + n_k$. Thus $x^n \in I_1 \cdots I_k$ for $n \ge \min\{m, n_1 + \dots + n_k\}$.
21 22	Recall that two ideals I and J of a commutative ring R are <i>comaximal</i> if $I+J = R$, and in this case, $IJ = I \cap J$.
23 24	Corollary 2.4. Let R be a commutative ring, m and n positive integers, and I_1, \ldots, I_k be (m, n) -closed ideals (respectively, semi-n-absorbing ideals) of R .
25 26 27	 I₁ ∩ · · · ∩ I_k is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R. If I₁, , I_k are pairwise comaximal, then I₁ · · · I_k is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.
28 29 30	Let <i>m</i> and <i>n</i> be positive integers. In [1], we defined a proper ideal <i>I</i> of a com- mutative ring <i>R</i> to be a <i>strongly n-absorbing ideal</i> of <i>R</i> if whenever $I_1 \cdots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of <i>R</i> , then there are <i>n</i> of the I_i 's whose product is in <i>I</i> .
31 32 33 34	Clearly, a strongly <i>n</i> -absorbing ideal is also an <i>n</i> -absorbing ideal, and in [1], we gave several cases where the two concepts are equivalent and conjectured that they are always equivalent. Analogously, we define a proper ideal I of R to be a <i>strongly</i> semi-n-absorbing ideal of R if $J^n \subseteq I$ whenever $J^{n+1} \subseteq I$ for an ideal J of R , and
35 36 37	more generally, we say that a proper ideal I of R is a <i>strongly</i> (m, n) -closed ideal of R if $J^n \subseteq I$ whenever $J^m \subseteq I$ for an ideal J of R . Clearly, every proper ideal of R is strongly (m, n) -closed for $1 \leq m \leq n$, a strongly (m, n) -closed ideal of R is

On (m, n)-closed ideals of commutative rings

an (m, n)-closed ideal of R, and an (m, 1)-closed ideal of R is also strongly (m, 1)-1 closed. However, an (m, n)-closed ideal of R need not be a strongly (m, n)-closed 2 ideal of R; we have the following example. 3

Example 2.5. Let $R = \mathbb{Z}[X, Y], I = (X^2, 2XY, Y^2), \text{ and } J = \sqrt{I} = (X, Y).$ 4 Suppose that $a^m \in I$ for $a \in R$ and m a positive integer. Then $a \in \sqrt{I}$, and thus 5 a = bX + cY for some $b, c \in R$. Hence $a^2 = (bX + cY)^2 = b^2X^2 + 2bcXY + c^2Y^2 \in I$, 6 and thus I is an (m, 2)-closed ideal of R for every positive integer m. It is easily 7 checked that $J^m \subseteq I$ for every integer $m \geq 3$. However, $J^2 \not\subseteq I$ since $XY \notin I$; so I8 is not a strongly (m, 2)-closed ideal of R for any integer $m \geq 3$. 9

Theorem 2.6. Let R be a commutative ring, m a positive integer, I an (m, 2)-11 closed ideal of R, and J an ideal of R. 12

(1) If $J^m \subseteq I$, then $2J^2 \subseteq I$. 13

28

29

(2) Suppose that $2 \in U(R)$. If $J^m \subseteq I$, then $J^2 \subseteq I$ (i.e. I is a strongly (m, 2)-closed 14 ideal of R). 15

Proof. (1) Let $x, y \in J$. Then $x^m, y^m, (x+y)^m \in I$ since $J^m \subseteq I$, and thus 16 $x^2, y^2, (x+y)^2 \in I$ since I is (m, 2)-closed. Hence $2xy = (x+y)^2 - x^2 - y^2 \in I$, and 17 thus $2J^2 \subseteq I$. 18 19

(2) This follows directly from (1).

Let I be an (m, n)-closed ideal of a commutative ring R. By Example 2.5, it is 20 possible that $x^n \in I$ for every $x \in J = \sqrt{I}$, but $J^n \not\subseteq I$. It is also possible that 21 $x^n \in I$ for every $x \in J = \sqrt{I}$, but $J^m \not\subseteq I$. Finally, it is possible to have $x^m \notin I$ for 22 some $x \in \sqrt{I}$. We have the following examples. 23

Example 2.7. (a) Let $R = \mathbb{Z}_2[X, Y, Z], I = (X^2, Y^2, Z^2)$, and $J = \sqrt{I} =$ 24 (X, Y, Z). Let $a \in J$. Then a = bX + cY + dZ for some $b, c, d \in R$. Thus 25 $a^2 = b^2 X^2 + c^2 Y^2 + d^2 Z^2 \in I$; so I is a (3,2)-closed ideal of R. However, 26 27 $J^3 \not\subseteq I$ since $XYZ \notin I$.

(b) Let $R = \mathbb{Z}$ and $I = 16\mathbb{Z}$. Then I is a (3, 2)-closed ideal of R. However, $2 \in$ $\sqrt{I} = 2\mathbb{Z}$, but $2^3 = 8 \notin I$.

The next theorem is the (m, n)-closed analog for well-known localization results 30 about prime, radical, and n-absorbing ideals ([1, Theorem 4.1]). 31

Theorem 2.8. Let R be a commutative ring, m and n positive integers, I and 32 (m,n)-closed ideal of R, and S a multiplicatively closed subset of R such that $I \cap$ 33 $S = \emptyset.$ 34

(1) I_S is an (m, n)-closed ideal of R_S . In particular, if I is a semi-n-absorbing ideal 35 of R, then I_S is a semi-n-absorbing ideal of R_S . 36

In view of Example 2.5, we have the following result. 10

```
1 (2) If n = 2, 2 \in S, and J^m \subseteq I_S for an ideal J of R_S, then J^2 \subseteq I_S (i.e. I_S is a
2 strongly (m, 2)-closed ideal of R_S).
```

Proof. (1) Let $x^m \in I_S$ for $x \in R_S$. Then x = r/s for some $r \in R$ and $s \in S$, and thus $x^m = r^m/s^m = i/t$ for some $i \in I$ and $t \in S$. Hence $r^m tz = s^m iz \in I$ for some $z \in S$, and thus $(rtz)^m \in I$. Hence $(rtz)^n \in I$ since I is (m, n)-closed, and thus $x^n = r^n/s^n = r^n t^n z^n/s^n t^n z^n \in I_S$. Hence I_S is an (m, n)-closed ideal of R_S . The "in particular" statement is clear.

8 (2) Suppose that $J^m \subseteq I_S$ for an ideal J of R_S . Then $2 \in U(R_S)$ since $2 \in S$, 9 and thus $J^2 \subseteq I_S$ by Theorem 2.6(2).

10 Corollary 2.9. Let R be a commutative ring, I a proper ideal of R, and m and 11 n positive integers. Then I is an (m, n)-closed ideal of R if and only if I_P is an 12 (m, n)-closed ideal of R_P for every prime (or maximal) ideal of R containing I. In 13 particular, I is a semi-n-absorbing ideal if and only if I is locally a semi-n-absorbing 14 ideal.

Proof. (\Rightarrow) This follows directly from Theorem 2.8(1).

16 (\Leftarrow) Let $x^m \in I$ for $x \in R$, $J = \{r \in R \mid rx^n \in I\}$ (an ideal of R), and P be 17 a prime ideal of R with $I \subseteq P$. Then $(x/1)^m \in I_P$; so $(x/1)^n \in I_P$ since I_P is 18 (m, n)-closed. Thus $sx^n \in I$ for some $s \in R \setminus P$; so $J \notin P$. Clearly, $J \notin Q$ for every 19 prime ideal Q of R with $I \notin Q$. Hence J = R; so $x^n \in I$. Thus I is (m, n)-closed. 20 The "in particular" statement is clear.

The next theorem and corollary extend well-known results about prime, radical, and *n*-absorbing ideals ([1, Theorem 4.2, Corollary 4.3]) to (m, n)-closed ideals; their proofs are left to the reader.

Theorem 2.10. Let R and T be commutative rings, m and n positive integers, and $f: R \to T$ a homomorphism.

26 (1) If J is an (m,n)-closed ideal (respectively, semi-n-absorbing ideal) of T, then 27 $f^{-1}(J)$ is an (m,n)-closed ideal (respectively, semi-n-absorbing ideal) of R.

(2) If f is surjective and I is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R containing kerf, then f(I) is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of T.

31 Corollary 2.11. Let m and n be positive integers.

32 (1) Let $R \subseteq T$ be an extension of commutative rings. If J is an (m, n)-closed ideal 33 (respectively, semi-n-absorbing ideal) of T, then $J \cap R$ is an (m, n)-closed ideal 34 (respectively, semi-n-absorbing ideal) of R.

35 (2) Let $I \subseteq J$ be proper ideals of a commutative ring R. Then J/I is an (m, n)-36 closed ideal (respectively, semi-n-absorbing ideal) of R/I if and only if J is an 37 (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R. January 27, 2016 18:13 WSPC/S0219-4988 171-JAA

On (m, n)-closed ideals of commutative rings

1750013

Recall that an ideal of $R \times S$ has the form $I \times J$ for I an ideal of R and J an 1 ideal of S. For a ring T, it will be convenient to define the improper ideal T to be 2 3 an $(\infty, 1)$ -closed ideal of T; then the following theorem holds for all ideals of $R \times S$ (also, see Theorem 4.1(9) and Remark 4.2(d)). The *n*-absorbing ideal analog of the 4 next theorem was given in [1, Theorem 4.7]; its proof is also left to the reader. 5 **Theorem 2.12.** Let R and S be commutative rings, I an (m_1, n_1) -closed ideal of 6 R, and J an (m_2, n_2) -closed ideal of S. Then $I \times J$ is an (m, n)-closed ideal of $R \times S$ 7 for all positive integers $m \leq \min\{m_1, m_2\}$ and $n \geq \max\{n_1, n_2\}$. 8 9 It is well-known that every proper ideal of a commutative ring R is a prime ideal if and only if R is a field (this is the very first exercise in [14]), and it is 10 easily shown that every proper ideal of R is a radical ideal if and only if R is von 11Neumann regular. Our next goal is to determine when every proper ideal of R is 12 (m, n)-closed. The following result is included for further reference. 13 14 **Theorem 2.13.** Let R be a commutative ring and n a positive integer. (1) Every proper ideal of R is a prime ideal if and only if R is a field. 15 (2) Every proper ideal of R is a radical ideal if and only if R is von Neumann 16 regular. 17 (3) If every proper ideal of R is an n-absorbing ideal, then $\dim(R) = 0$ and R has 18 at most n maximal ideals. 19 **Proof.** (1) This result is well known ([14, Exercise 1, p. 7]). 20 (2) First, suppose that every proper ideal of R is a radical ideal. Let $x \in R$ be a 21 nonunit. Then $x^2 R$ is a radical ideal, and thus $x \in x^2 R$; so $x = x^2 y$ for some $y \in R$. 22 If $x \in U(R)$, then $x = x^2 x^{-1}$ with $x^{-1} \in R$. Hence R is von Neumann regular. 23 Conversely, suppose that R is von Neumann regular. Let I be a proper ideal of 24 R and $x^2 \in I$ for $x \in R$. Then $x = x^2 y$ for some $y \in R$, and thus $x = x^2 y \in I$. 25 Hence I is a radical ideal. 26 27 (3) This is [1, Theorem 5.9]. 28 m. Then the following statements are equivalent. 29 (1) Every proper ideal of R is an (m, n)-closed ideal of R. 30 (2) $\dim(R) = 0$ and $w^n = 0$ for every $w \in \operatorname{nil}(R)$. 31 **Proof.** (1) \Rightarrow (2) Let $w \in \operatorname{nil}(R)$. Then $w^m R$ is an (m, n)-closed ideal of R; so $w^n \in$ 32 $w^m R$ since $w^m \in w^m R$. Thus $w^n = w^m z$ for some $z \in R$. Hence $w^n (1 - w^{m-n} z) = 0$, 33 and thus $w^n = 0$ since $1 - w^{m-n}z \in U(R)$ because $w^{m-n}z \in n(R)$ since m > n. 34 35 Suppose, by way of contradiction, that $\dim(R) \geq 1$. Then there are prime ideals $P \subsetneq Q$ of R. Let $x \in Q \setminus P$. As above, $x^n \in x^m R$; so $x^n = x^m y$ for some $y \in R$. 36 Thus $x^n(1-x^{m-n}y) = 0 \in P$, and hence $1-x^{m-n}y \in P \subseteq Q$ since $x \in Q \setminus P$. But 37 then $1 \in Q$ since $x^{m-n}y \in Q$, a contradiction. Thus dim(R) = 0. 38

(2) \Rightarrow (1) Let I be a proper ideal of R, and assume that $x^m \in I$ for $x \in R$. 1 Then R is π -regular since dim(R) = 0, and thus x = eu + w for some idempotent 2 $e \in R, u \in U(R)$, and $w \in nil(R)$ by [15, Theorem 13]. If n = 1, then R is 3 reduced, and thus R is von Neumann regular since $\dim(R) = 0$. In this case, every 4 proper ideal of R is a radical ideal by Theorem 2.13(2), and hence I is (m, 1)-5 closed. Thus we may assume that $n \ge 2$. Let $k \ge n$; so $w^k = 0$. Then $x^k =$ 6 $(eu + w)^{k} = eu^{k} + keu^{k-1}w + \dots + keuw^{k-1} = e(u^{k} + ku^{k-1}w + \dots + kuw^{k-1}).$ 7 Hence $v_k = u^k + ku^{k-1}w + \dots + kuw^{k-1} \in U(R)$ since $u \in U(R)$, $w \in nil(R)$, and 8 $k \geq 2$; and thus $x^k = ev_k$. In particular, $x^m = eh \in I$ with $h \in U(R)$ since m > n, 9 and hence $e = h^{-1}x^m \in I$. Thus $x^k = ev_k \in I$ for every integer $k \ge n$. Hence I is 10 (m, n)-closed. 11 In light of Theorem 2.14, and the fact that an (m, n)-closed ideal is also (m', n)-12 closed for every positive integer $m' \leq m$, we have the following results. 13 **Theorem 2.15.** Let R be a commutative ring and n a positive integer. Then the 14 following statements are equivalent. 15 (1) Every proper ideal of R is (m, n)-closed for every positive integer m. 16 (2) There is an integer m > n such that every proper ideal of R is (m, n)-closed. 17 (3) For every proper ideal I of R, there is an integer $m_I > n$ such that I is (m_I, n) -18 19 closed. (4) Every proper ideal of R is a semi-n-absorbing ideal (i.e. (n+1, n)-closed ideal) 20 21 of R. (5) $\dim(R) = 0$ and $w^n = 0$ for every $w \in \operatorname{nil}(R)$. 22 **Proof.** Clearly, $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, and $(4) \Rightarrow (5)$ follows from Theorem 2.14. 23 Finally, $(5) \Rightarrow (1)$ follows from Theorem 2.14 for m > n, and from the fact that 24 every proper ideal is (m, n)-closed for $1 \le m \le n$. 25 **Corollary 2.16.** Let R be a reduced commutative ring. Then the following state-26 ments are equivalent. 27 (1) Every proper ideal of R is a radical ideal. 28 (2) Every proper ideal of R is (m, n)-closed for all positive integers m and n. 29 (3) There is a positive integer n such that every proper ideal of R is (m, n)-closed 30 for every integer $m \geq n$. 31 (4) There is a positive integer n such that every proper ideal I of R is (m_I, n) -closed 32 for some integer $m_I > n$. 33 (5) There is a positive integer n such that every proper ideal of R is a semi-n-34 absorbing ideal (i.e. (n + 1, n)-closed ideal) of R. 35 (6) R is a von Neumann regular ring. 36 Moreover, if R is an integral domain and any of the above conditions hold, then R37 is a field. 38

On (m, n)-closed ideals of commutative rings

Proof. Clearly, $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$, and $(5) \Rightarrow (6)$ by Theorem 2.14 since a reduced commutative ring R with dim(R) = 0 is von Neumann regular. Also, $(6) \Rightarrow (1)$ by Theorem 2.13(2). The "moreover" statement holds since an integral domain is von Neumann regular if and only if it is a field.

Corollary 2.17. Let R be a reduced commutative ring and n a positive integer.
Then every proper ideal of R is an n-absorbing ideal of R if and only if R is isomorphic to the direct product of at most n fields.

8 **Proof.** (\Rightarrow) R is von Neumann regular by Corollary 2.16 since an n-absorbing 9 ideal is a semi-n-absorbing ideal, and R has at most n maximal ideals by Theo-10 rem 2.13(b). Thus R is isomorphic to the direct product of at most n fields by the 11 Chinese Remainder Theorem.

 (\Leftarrow) This follows directly from [1, Corollary 4.8].

Remark 2.18. Let R be a commutative Noetherian ring. Then every proper ideal of R is an n-absorbing ideal, and thus a semi-n-absorbing ideal (i.e. (n+1, n)-closed ideal) of R, for some positive integer n ([1, Theorem 5.3]). However, if there is a fixed positive integer n such that every proper ideal of R is a semi-n-absorbing ideal of R, then dim(R) = 0 by Theorem 2.15.

18 **3.** Principal Ideals

12

In this section, we determine when the powers of a principal prime ideal of an 19 integral domain are (m, n)-closed. Specifically, let R be an integral domain, $I = p^k R$, 20 where p is a prime element of R and k is a positive integer, and m and n be fixed 21 positive integers with $1 \leq n < m$. We first determine $\mathcal{A}(m,n) = \{k \in \mathbb{N} \mid p^k R\}$ 22 is (m, n)-closed}. Of course, $\mathcal{A}(m, n) = \mathbb{N}$ for $1 \leq m \leq n$. Later, we fix k, and 23 then determine $\mathcal{R}(p^k R) = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid p^k R \text{ is } (m, n) \text{-closed}\}$. Note that these 24 results are independent of the integral domain R and the prime p. Finally, these 25 characterizations are extended to ideals of the form $p_1^{k_1} \cdots p_i^{k_i} R$, where p_1, \ldots, p_i 26 are nonassociate prime elements of R and k_1, \ldots, k_i are positive integers. 27

Theorem 3.1. Let R be an integral domain, m and n integers with $1 \le n < m$, and $I = p^k R$, where p is a prime element of R and k is a positive integer. Then the following statements are equivalent.

31 (1) I is an (m, n)-closed ideal of R.

(2) k = ma + r, where a and r are integers such that $a \ge 0, 1 \le r \le n, a(m \mod n) + r \le n$, and if $a \ne 0$, then m = n + c for an integer c with $1 \le c \le n - 1$.

34 (3) If m = bn + c for integers b and c with $b \ge 2$ and $0 \le c \le n - 1$, then 35 $k \in \{1, ..., n\}$. If m = n + c for an integer c with $1 \le c \le n - 1$, then 36 $k \in \bigcup_{h=1}^{n} \{mi + h \mid i \in \mathbb{Z} \text{ and } 0 \le ic \le n - h\}$.

Proof. (1) \Rightarrow (2) Suppose that $I = p^k R$ is an (m, n)-closed ideal of R for integers 1 2 m and n with $1 \le n < m$. Then k = ma + r, where a and r are integers such that $a \ge 0$ and $0 \le r \le m-1$. Assume that r=0; so a > 0. Thus $(p^a)^m = p^k \in I$, and 3 hence $(p^a)^n \in I$ since I is (m, n)-closed, which is impossible since na < ma = k. 4 Thus $1 \leq r \leq m-1$. Let d be the smallest positive integer such that $(p^d)^m \in I$. 5 Then m(a+1) = k + m - r > k since r < m, and ma < k since $r \neq 0$. So d = a + 16 is the smallest positive integer such that $(p^d)^m \in I$. Then $(p^{a+1})^m \in I$, and hence 7 $(p^{a+1})^n \in I$ since I is (m, n)-closed. Thus $na + n = n(a+1) \ge k = ma + r$. 8 Hence $n \ge a(m-n) + r$ with $a(m-n) \ge 0$; so $1 \le r \le n$. Since n < m, we 9 have m = bn + c for integers b and c with $b \ge 1$ and $0 \le c \le n - 1$. Thus 10 $n \ge a(bn+c-n)+r = a(b-1)n+ac+r$. Since $n \ge a(b-1)n+ac+r$ and 11 $ac + r \ge 1$, we have a(b-1) = 0, and hence $n \ge ac + r$. Thus $a(m \mod n) + r \le n$ 12 since $c = m \mod n$. Assume that $a \neq 0$. Then b = 1 since a(b-1) = 0. Hence 13 m = n + c with $1 \le c \le n - 1$ since n < m. 14 $(2) \Rightarrow (1)$ Suppose that k = ma + r, where a and r are integers such that $a \ge 0$, 15 $1 \leq r \leq n$, $a(m \mod n) + r \leq n$, and if $a \neq 0$, then m = n + c for an integer c 16 with $1 \leq c \leq n-1$. Assume that $x^m \in I$ for $x \in R$. We consider two cases. Case 17 I: Assume that a = 0. Then k = r, and hence $1 \le k \le n$. Then $p \mid x$, and thus 18 $p^k | x^k$. Hence $p^k | x^n$ since $n \ge k$, and thus $x^n \in I$. Case II: Assume that $a \ne 0$. 19 We show that $p^k | x^n$, and hence $x^n \in I$. Then p | x and $p^k | x^m$ since $x^m \in I$. If 20 $p^k \mid x$, then $x^n \in I$. So assume that $p^k \nmid x$. Let *i* be the largest positive integer such 21 that $p^i | x$. Thus $p^{mi} | x^m$ and mi is the largest positive integer such that $p^{mi} | x^m$. 22 23 Hence $mi \ge k$; so $0 \ge k - mi = (ma + r) - mi = m(a - i) + r$. Since $1 \le r \le n$, we have i > a. Thus i = a + b for an integer $b \ge 1$. Then k = ma + r and m = n + c24 give $k/n = (ma+r)/n = ((n+c)a+r)/n = (na+ca+r)/n = a+(ca+r)/n \le a+1$ 25 since $ac + r = a(m \mod n) + r \le n$. Since $b \ge 1$, we have $i = a + b \ge a + 1 \ge k/n$, 26 and hence $ni \geq k$. Thus $p^{ni} | x^n$ since $p^i | x$, and hence $p^k | x^n$ since $ni \geq k$. So 27 $x^n \in I$. Thus I is (m, n)-closed. 28 $(2) \Leftrightarrow (3)$ Note that (3) is just an explicit form of (2). 29

Theorem 3.2. Let R be an integral domain, n a positive integer, and $I = p^k R$, where p is a prime element of R and k is a positive integer. Then the following statements are equivalent.

- 33 (1) I is a semi-n-absorbing ideal (i.e. (n+1,n)-closed ideal) of R.
- 34 (2) k = (n+1)a + r, where a and r are integers such that $a \ge 0, 1 \le r \le n$, and 35 $a + r \le n$.
- 36 (3) $k \in \bigcup_{h=1}^{n} \{ (n+1)i + h \mid i \in \mathbb{Z} \text{ and } 0 \le i \le n-h \}.$
- 37 Moreover, $|\{k \in \mathbb{N} | p^k R \text{ is } (n+1,n)\text{-}closed\}| = n(n+1)/2.$
- **Proof.** (1) \Leftrightarrow (2) The proof is clear by Theorem 3.1 since an ideal I of R is a semi-*n*-absorbing ideal if and only if I is (n + 1, n)-closed.

 $On \ (m,n)$ -closed ideals of commutative rings

1 2	(2) \Leftrightarrow (3) Note that (3) is just an explicit form of (2). The "moreover" statement follows from (3).
3 4 5	Corollary 3.3. Let R be an integral domain and $I = p^k R$, where p is a prime element of R and k is a positive integer. Then I is a semi-2-absorbing ideal (i.e. $(3,2)$ -closed ideal) of R if and only if $k \in \{1,2,4\}$.
6 7 8 9 10	We next extend these results to products of prime powers. We use the well- known fact that if p_1, \ldots, p_n are nonassociate prime elements of an integral domain R , then $p_1^{k_1}R \cap \cdots \cap p_n^{k_n}R = p_1^{k_1} \cdots p_n^{k_n}R$ for all positive integers k_1, \ldots, k_n . Note that $p_1^{k_1} \cdots p_n^{k_n}R$ is an <i>m</i> -absorbing ideal of R if and only if $m \ge k_1 + \cdots + k_n$ ([1, Theorem 2.1(d)]).
11 12 13	Theorem 3.4. Let R be an integral domain, m and n integers with $1 \le n < m$, and $I = p_1^{k_1} \cdots p_i^{k_i} R$, where p_1, \ldots, p_i are nonassociate prime elements of R and k_1, \ldots, k_i are positive integers. Then the following statements are equivalent.
14 15 16 17 18 19	(1) I is an (m, n) -closed ideal of R. (2) $p_j^{k_j} R$ is an (m, n) -closed ideal of R for every $1 \le j \le i$. (3) If $m = bn + c$ for integers b and c with $b \ge 2$ and $0 \le c \le n - 1$, then $k_j \in \{1, \ldots, n\}$ for every $1 \le j \le i$. If $m = n + c$ for an integer c with $1 \le c \le n - 1$, then $k_j \in \bigcup_{h=1}^n \{mv + h \mid v \in \mathbb{Z} \text{ and } 0 \le vc \le n - h\}$ for every $1 \le j \le i$.
20 21 22	Proof. (1) \Rightarrow (2) Let $I_j = p_j^{k_j} R$. Suppose that $x^m \in I_j$ for $x \in R$. Let $y = x(p_1^{k_1} \cdots p_i^{k_i})/p_j^{k_j} \in R$. Then $y^m \in I$, and hence $y^n \in I$ since I is (m, n) -closed. By construction, $y^n \in I$ if and only if $x^n \in I_j$. Thus I_j is an (m, n) -closed ideal of R
23 24 25	for every $1 \le j \le i$. (2) \Rightarrow (1) This is clear by Corollary 2.4(1) since $p_1^{k_1} R \cap \cdots \cap p_i^{k_i} R = p_1^{k_1} \cdots p_i^{k_i} R$. (2) \Leftrightarrow (3) This is clear by Theorem 3.1.
26 27	Corollary 3.5. Let R be a principal ideal domain, I a proper ideal of R, and m and n integers with $1 \le n < m$. Then the following statements are equivalent.
28 29 30 31 32	 (1) I is an (m,n)-closed ideal of R. (2) I = p₁^{k₁} p_i^{k_i} R, where p₁,, p_i are nonassociate prime elements of R and k₁,, k_i are positive integers, and one of the following two conditions holds. (a) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then k_j ∈ {1,,n} for every 1 ≤ j ≤ i.
33 34	(b) If $m = n + c$ for an integer c with $1 \le c \le n-1$, then $k_j \in \bigcup_{h=1}^n \{mv+h \mid v \in \mathbb{Z} \text{ and } 0 \le vc \le n-h\}$ for every $1 \le j \le i$.
35 36	Corollary 3.6. Let R be an integral domain, $I = p_1^{k_1} \cdots p_i^{k_i} R$, where p_1, \ldots, p_i are nonassociate prime elements of R and k_1, \ldots, k_i are positive integers, and n a

1	positive integer. Then the following statements are equivalent.
2 3	(1) I is a semi-n-absorbing ideal (i.e. $(n+1,n)$ -closed ideal) of R. (2) $k_j \in \bigcup_{h=1}^n \{(n+1)v + h \mid v \in \mathbb{Z} \text{ and } 0 \le v \le n-h\}$ for every $1 \le j \le i$.
4 5	Corollary 3.7. Let R be a principal ideal domain, I a proper ideal of R , and n a positive integer. Then the following statements are equivalent.
6 7 8 9	 (1) I is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed ideal) of R. (2) I = p₁^{k₁} ··· p_i^{k_i} R, where p₁,, p_i are nonassociate prime elements of R and k₁,, k_i are positive integers, and k_j ∈ ∪_{h=1}ⁿ {(n+1)v + h v ∈ Z and 0 ≤ v ≤ n - h} for every 1 ≤ j ≤ i.
10 11	The next theorem uses Theorem 3.1 to give an easier criterion to determine when $p^k R$ is (m, n) -closed.
12 13 14	Theorem 3.8. Let R be an integral domain, m and n integers with $1 \le n < m$, and $I = p^k R$, where p is a prime element R and k is a positive integer. Then the following statements are equivalent.
15 16	 I is an (m,n)-closed ideal of R. Exactly one of the following statements holds.
17 18 19 20 21	 (a) 1 ≤ k ≤ n. (b) There is a positive integer a such that k = ma + r = na + d for integers r and d with 1 ≤ r, d ≤ n − 1. (c) There is a positive integer a such that k = ma + r = n(a+1) for an integer r with 1 ≤ r ≤ n − 1.
22 23 24 25 26 27 28 29	Proof. (1) \Rightarrow (2) Suppose that <i>I</i> is (m, n) -closed. Then by Theorem 3.1, $k = ma + r$, where <i>a</i> and <i>r</i> are integers such that $a \ge 0, 1 \le r \le n, a(m \mod n) + r \le n$, and if $a \ne 0$, then $m = n + c$ for an integer <i>c</i> with $1 \le c \le n - 1$. Thus if $a = 0$, then $1 \le k \le n$. Hence assume that $a \ne 0$. Note that $m \mod n = c$. Since $c \ne 0$ and $ac + r \le n$, we conclude that $1 \le r < n$. Since $k = ma + r$ and $m = n + c$, we have $k = (n + c)a + r = na + ac + r$. Let $d = ac + r$. Then $d \le n$. If $d < n$, then $k = ma + r = na + d$, where $1 \le r, d \le n - 1$. If $d = n$, then $k = ma + r = n(a + 1)$, where $1 \le r \le n - 1$.
30 31 32 33 34 35	$(2) \Rightarrow (1)$ First, suppose that $1 \le k \le n$. Then it is clear that I is an (m, n) -closed ideal of R . Next, suppose that there is an integer $a \ge 1$ such that $k = ma + r = na + d$, where $1 \le r, d \le n-1$. Then $m = n + (d-r)/a$, and thus $m = n + c$ for an integer c with $1 \le c \le n-1$. Hence I is (m, n) -closed by Theorem 3.1. Finally, suppose that there is an integer $a \ge 1$ such that $k = ma + r = n(a + 1)$, where $1 \le r \le n-1$. Then $m = n + (n-r)/a = n + c$ for an integer c with $1 \le c \le n-1$,
36 37 38	and thus I is (m, n) -closed by Theorem 3.1. We next calculate $\mathcal{R}(p^k R) = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid p^k R \text{ is } (m, n)\text{-closed}\}$ for a fixed positive integer k . The following lemma will be needed.

 $On \ (m, n)$ -closed ideals of commutative rings

1	Lemma 3.9. Let a, d, m, n, r , and w be positive integers such that $1 \leq r < m$,		
2	$1 \le w < n < m$, and $1 \le d \le a$.		
3	(1) If $ma + r = na + w$, then $1 \le r < w < n$ and $1 \le a < n$.		
4	(2) If $ma + r = n(a + 1)$, then $1 \le r < n$ and $1 \le a < n$.		
5	(3) If $ma + r = n(a + 1) + d$, then either $m = n + 1$ or $1 \le a < n$.		
6	Proof. (1) Suppose that $ma + r = na + w$. Then $w - r = a(m - n) > 0$ and $1 \le w < m - n$		
7	n. Thus $1 \le r < w < n$, and hence $0 < w - r < n$. Thus $a = (w - r)/(m - n) < n$		
8	since $0 < w - r < n$ and $m - n \ge 1$.		
9	(2) Suppose that $ma + r = n(a+1)$. Then $n - r = a(m-n) > 0$. Thus $1 \le r < n$,		
10	and $a = (n - r)/(m - n) < n$ since $0 < n - r < n$ and $m - n \ge 1$.		
11	(3) Suppose that $ma + r = n(a + 1) + d$ and $a \ge n$. Then $0 < m - n =$		
12	$a(m-n)/a = (n+d-r)/a = n/a + d/a - r/a < 2$ since $1 < n \le a, 1 \le d \le a$, and		
13	r > 0. Thus $m - n = 1$; so $m = n + 1$.		
14	For fixed positive integers m and k , we next determine the smallest positive		
15	integer n such that $I = p^k R$ is (m, n) -closed. Note that $n \leq m$ since every proper		
16	ideal is (m, m) -closed and that I is (m, n') -closed for all positive integers $n' \ge n$.		
17	So this determines $\mathcal{R}(p^k R)$. Also, if $m > 1$, then $n = 1$ if and only if $k = 1$, i.e. if		
18	and only if I is a prime ideal of R. As usual, $\lfloor x \rfloor$ is the greatest integer, or floor,		
19	function.		
20	Theorem 3.10. Let R be an integral domain and $I = p^k R$, where p is a prime		
20 21	Theorem 3.10. Let R be an integral domain and $I = p^k R$, where p is a prime element of R and k is a positive integer. Let m be a positive integer and n be the		
21	element of R and k is a positive integer. Let m be a positive integer and n be the		
21 22	element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n) -closed.		
21 22 23	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m,n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. 		
21 22 23 24	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m,n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. 		
21 22 23 24 25	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. 		
21 22 23 24 25 26	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m,n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. 		
21 22 23 24 25 26 27 28	element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n) -closed. (1) If $m \ge k$, then $n = k$. (2) Let $m < k$ and write $k = ma + r$, where a is a positive integer and $0 \le r < m$. (a) If $r = 0$, then $n = m$. (b) If $r \ne 0$ and $a \ge m$, then $n = m$. (c) If $r \ne 0$, $a < m$, and $(a + 1) \mid k$, then $n = k/(a + 1)$. (d) If $r \ne 0$, $a < m$, and $(a + 1) \nmid k$, then $n = \lfloor k/(a + 1) \rfloor + 1$.		
21 22 23 24 25 26 27	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = ⌊k/(a + 1)⌋ + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)- 		
21 22 23 24 25 26 27 28 29	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = ⌊k/(a + 1)⌋ + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed 		
21 22 23 24 25 26 27 28 29 30	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = ⌊k/(a + 1)⌋ + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)- 		
21 22 23 24 25 26 27 28 29 30 31	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = [k/(a + 1)] + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed when m ≥ k. (2) We may assume that m > 1, and n ≤ m by the above comments. 		
21 22 23 24 25 26 27 28 29 30 31 32	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = [k/(a + 1)] + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed when m ≥ k. (2) We may assume that m > 1, and n ≤ m by the above comments. (a) Suppose that r = 0. Then I is not (m, m - 1)-closed since (p^a)^m = p^k ∈ I 		
21 22 23 24 25 26 27 28 29 30 31 32 33	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = [k/(a + 1)] + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed when m ≥ k. (2) We may assume that m > 1, and n ≤ m by the above comments. 		
21 22 23 24 25 26 27 28 29 30 31 32 33 34	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = [k/(a + 1)] + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed when m ≥ k. (2) We may assume that m > 1, and n ≤ m by the above comments. (a) Suppose that r = 0. Then I is not (m, m - 1)-closed since (p^a)^m = p^k ∈ I and (p^a)^{m-1} = p^{ma-a} = p^{k-a} ∉ I. Thus n = m since I is (m, m)-closed. (b) Suppose that r ≠ 0 and a ≥ m. If n ≠ m, then n < m < k. Thus either 		
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	 element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed. (1) If m ≥ k, then n = k. (2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m. (a) If r = 0, then n = m. (b) If r ≠ 0 and a ≥ m, then n = m. (c) If r ≠ 0, a < m, and (a + 1) k, then n = k/(a + 1). (d) If r ≠ 0, a < m, and (a + 1) ∤ k, then n = [k/(a + 1)] + 1. Proof. (1) If m ≥ k, then p^m ∈ I implies pⁿ ∈ I; so n ≥ k. Clearly, I is (m, k)-closed; so n = k is the smallest positive integer such that I is (m, n)-closed when m ≥ k. (2) We may assume that m > 1, and n ≤ m by the above comments. (a) Suppose that r = 0. Then I is not (m, m - 1)-closed since (p^a)^m = p^k ∈ I and (p^a)^{m-1} = p^{ma-a} = p^{k-a} ∉ I. Thus n = m since I is (m, m)-closed. 		

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	 (c) Suppose that r ≠ 0, a < m, and (a + 1) k. Let i = k/(a + 1). Then k = ma + r = i(a + 1) with 1 ≤ i < m; so 1 ≤ r < i by Lemma 3.9(2). By Theorem 3.8, I is an (m, i)-closed ideal and it is clear that i is the smallest such positive integer. Thus n = i = k/(a + 1). (d) Suppose that r ≠ 0, a < m, and (a + 1) ∤ k. Let i = [k/(a + 1)]. Then k = ma + r = i(a + 1) + d, where 1 ≤ d ≤ a and 1 ≤ i < m. Thus either m = i + 1 or 1 ≤ d ≤ a < i by Lemma 3.9(3). First, suppose that m = i + 1. Since (a+1) ∤ k, k ≠ i(a+1), and thus I is not (m, i)-closed by Theorem 3.8. Hence n = m = i + 1 = [k/(a + 1)] + 1 is the smallest positive integer such that I is (m, n)-closed. Next, suppose that 1 ≤ d ≤ a < i and m ≠ i + 1; so i + 1 < m. Since k = i(a + 1) + d, we have k = (i + 1)a + i + d - a. Let j = i + d - a ∈ Z. Then 1 ≤ j ≤ i since 1 ≤ d ≤ a < i. Thus [k/(i + 1)] = a. Since k = ma + r = (i + 1)a + j with 1 ≤ j < i + 1 < m, we have 1 ≤ r < j ≤ i by Lemma 3.9(1). Hence I is (m, i + 1)-closed by Theorem 3.8. Since (a + 1) ∤ k, we have k ≠ i(a + 1), and thus I is not (m, i)-closed by Theorem 3.8. Hence n = i + 1 = [k/(a + 1)] + 1 is the smallest positive integer such that I ≤ r < j ≤ i by Lemma 3.9(1). Hence I is (m, i + 1)-closed by Theorem 3.8. Since (a + 1) ∤ k, we have k ≠ i(a + 1), and thus I is not (m, i)-closed by Theorem 3.8. Hence n = i + 1 = [k/(a + 1)] + 1 is the smallest positive integer such that I is (m, n)-closed.
18 19 20 21 22	For fixed positive integers n and k , we next determine the largest positive integer m (or ∞) such that $I = p^k R$ is (m, n) -closed. (If I is (m, n) -closed for every positive integer m , we will say that I is (∞, n) -closed.) Of course, m can also be found using the previous theorem. Clearly, $m \ge n$ since every proper ideal is (n, n) -closed, and I is (m', n) -closed for every positive integer $m' \le m$.
23 24	Theorem 3.11. Let R be an integral domain, n a positive integer, and $I = p^k R$, where p is a prime element of R and k is a positive integer.
25 26 27 28 29 30 31 32 33	 (1) If n ≥ k, then I is (m, n)-closed for every positive integer m. (2) Let n < k and write k = na + r, where a is a positive integer and 0 ≤ r < n. Let m be the largest positive integer such that I is (m, n)-closed. (a) If a > n, then m = n. (b) If a = n and r = 0, then m = n + 1. (c) If a = n and r ≠ 0, then m = n. (d) If a < n, r = 0, and (a - 1) k, then m = k/(a - 1) - 1. (e) If a < n, r = 0, and (a - 1) k, then m = [k/(a - 1)]. (f) If a < n, r ≠ 0, and a k, then m = k/a - 1.
34 35 36	(g) If $a < n, r \neq 0$, and $a \nmid k$, then $m = \lfloor k/a \rfloor$. Proof. (1) Let $x^m \in I$ for $x \in R$ and m a positive integer. Then $p \mid x^m$; so $p \mid x$ since n is prime. Thus $n^n \mid x^n$: so $x^n \in I$ since $n \ge k$. Hence I is (m, n) closed
36 37 38 39 40	since p is prime. Thus $p^n x^n$; so $x^n \in I$ since $n \ge k$. Hence I is (m, n) -closed. (2) By the above comments, $m \ge n$. Suppose that I is (m, n) -closed and $m > n$. If $r = 0$, then $k = m(a-1) + w = na$, where $1 \le w < n$ and $a - 1 < n$ by Theorem 3.8 and Lemma 3.9(2). If $r \ne 0$, then $k = ma + d = na + r$, where $1 \le d < r < n$ and $a < n$ by Theorem 3.8 and Lemma 3.9(1).

171-JAA 1750013

On (m, n)-closed ideals of commutative rings

(a) Suppose that a > n. If $m \neq n$, then m > n; so either a - 1 < n or a < n by 1 the above comments. In either case, $a \leq n$, a contradiction. Thus m = n. 2 (b) Suppose that a = n and r = 0; so $k = n^2$ and $n \ge 2$ since n < k. Note 3 that $(p^{\alpha})^{n+1} \in I \Rightarrow \alpha(n+1) \ge k = n^2 \Rightarrow \alpha \ge n \Rightarrow \alpha n \ge n^2 = k \Rightarrow (p^{\alpha})^n \in I;$ 4 so I is (n+1, n)-closed. However, I is not (n+2, n)-closed since $(p^{n-1})^{n+2} \in I$ and 5 $(p^{n-1})^n \notin I$. Thus m = n+1. 6 (c) Suppose that a = n and $r \neq 0$. If m > n, then a < n by the above comments. 7 This is a contradiction; so m = n. 8 9 (d) Suppose that a < n, r = 0, and (a-1)|k (note that a > 2 since na = k > n). Let f = k/(a-1); so k = f(a-1) and a < n < f. Thus k = f(a-1) = f(a-1)10 (f-1+1)(a-1) = (f-1)(a-1) + a - 1 = na with a-1 < n. Hence I is 11 (f-1, n)-closed by Theorem 3.8. Note that I is not (f, n)-closed by Theorem 3.8. 12 Hence m = f - 1 = k/(a - 1) - 1 is the largest positive integer such that I is 13 (m, n)-closed. 14 (e) Suppose that a < n, r = 0, and $(a - 1) \nmid k$ (as in (d), $a \ge 2$). Let f =15 $\lfloor k/(a-1) \rfloor$; so k = f(a-1) + d, where $1 \le d < a-1$. Since a < n < f, we have 16 $1 \leq d < a - 1 < f$. Since k = f(a - 1) + d = na and $1 \leq d < f$, we have d < n by 17 Lemma 3.9(2). Thus I is (f, n)-closed by Theorem 3.8. Note that by construction of 18 f, if k = i(a-1) + c for some $1 \le c < a-1$, then $i \le f$. Thus $m = f = \lfloor k/(a-1) \rfloor$ 19 is the largest positive integer such that I is (m, n)-closed. 20 (f) Suppose that $a < n, r \neq 0$, and $a \mid k$. Let f = k/a; so k = fa and $f \ge n+1$. 21 Then I is not (f, n)-closed by Theorem 3.8. First, assume that f - 1 > n. Thus 22 k = fa = (f - 1 + 1)a = (f - 1)a + a. Since a < n < f - 1 and k = (f - 1)a + a = a23 na+r, we conclude that I is (f-1, n)-closed by Theorem 3.8. Hence, in this case, 24 m = f - 1 = k/a - 1 is the largest positive integer such that I is (m, n)-closed. 25 Next, assume that f - 1 = n. Then clearly m = n = k/a - 1 is again the largest 26 positive integer such that I is (m, n)-closed. 27 (g) Suppose that $a < n, r \neq 0$, and $a \nmid k$. Let $f = \lfloor k/a \rfloor$; so k = fa + d, where 28 $1 \le d < a$. Since a < n < f, we have $1 \le d < a < f$. Since k = fa + d = na + r and 29 $1 \leq d < f$, we have d < n by Lemma 3.9(1). Thus I is (f, n)-closed by Theorem 3.8. 30 Note that by construction of f, if k = ia + c for some $1 \le c < a$, then $i \le f$. Thus 31 $m = f = \lfloor k/a \rfloor$ is the largest positive integer such that I is (m, n)-closed. 32 The previous two theorems easily extend to products of principal prime ideals. 33 34

In particular, we can calculate $\mathcal{R}(I) = \{(m,n) \in \mathbb{N} \times \mathbb{N} | I \text{ is } (m,n)\text{-closed}\}$ for every proper ideal I in a principal ideal domain or every proper principal ideal Iin a unique factorization domain.

Theorem 3.12. Let R be an integral domain and $I = p_1^{k_1} \cdots p_i^{k_i} R$, where p_1, \ldots, p_i are nonassociate prime elements of R and k_1, \ldots, k_i are positive integers.

(1) Let m be a positive integer. If
$$n_j$$
 is the smallest positive integer such that $p_j^{\kappa_j} R$ is
(m, n_j)-closed for $1 \le j \le i$, then $n = \max\{n_1, \ldots, n_i\}$ is the smallest positive
integer such that I is (m, n) -closed.

- 1 (2) Let n be a positive integer. If m_j is the largest positive integer $(or \infty)$ such that 2 $p_j^{k_j} R$ is (m_j, n) -closed for $1 \le j \le i$, then $m = \min\{m_1, \ldots, m_i\}$ is the largest 3 positive integer $(or \infty)$ such that I is (m, n)-closed.
- 4 **Proof.** This follows since I is (m, n)-closed if and only if every $p_j^{k_j} R$ is (m, n)-closed 5 by Theorem 3.4.
- 6 4. General Results

⁷ Let *I* be a proper ideal of a commutative ring *R*. We define $\mathcal{R}(I) = \{(m,n) \in \mathbb{N} \times \mathbb{N} \mid I \text{ is } (m,n)\text{-closed}\}$. Thus $\{(m,n) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq m \leq n\} \subseteq \mathcal{R}(I) \subseteq \mathbb{N} \times \mathbb{N}$ and ⁹ $\mathcal{R}(I) = \mathbb{N} \times \mathbb{N}$ if and only if $\sqrt{I} = I$. We start with some elementary properties of ¹⁰ $\mathcal{R}(I)$. If we define $\mathcal{R}(R) = \mathbb{N} \times \mathbb{N}$, then the results in this section hold for all ideals ¹¹ of *R*.

Theorem 4.1. Let R be a commutative ring, I and J proper ideals of R, and m, n
and k positive integers.

- 14 (1) $(m,n) \in \mathcal{R}(I)$ for all positive integers m and n with $m \leq n$.
- 15 (2) If $(m,n) \in \mathcal{R}(I)$, then $(m',n') \in \mathcal{R}(I)$ for all positive integers m' and n' with 16 $1 \leq m' \leq m$ and $n' \geq n$.
- 17 (3) If $(m,n) \in \mathcal{R}(I)$, then $(km,kn) \in \mathcal{R}(I)$.
- 18 (4) If $(m, n), (n, k) \in \mathcal{R}(I)$, then $(m, k) \in \mathcal{R}(I)$.
- 19 (5) If $(m, n), (m + 1, n + 1) \in \mathcal{R}(I)$ for $m \neq n$, then $(m + 1, n) \in \mathcal{R}(I)$.
- 20 (6) If $(n,2), (n+1,2) \in \mathcal{R}(I)$ for an integer $n \geq 3$, then $(n+2,2) \in \mathcal{R}(I)$, and 21 thus $(m,2) \in \mathcal{R}(I)$ for every positive integer m.
- 22 (7) If $(m,n) \in \mathcal{R}(I)$ for positive integers m and n with $n \leq m/2$, then $(m+1,n) \in \mathcal{R}(I)$, and thus $(k,n) \in \mathcal{R}(I)$ for every positive integer k.
- (8) $(m,n) \in \mathcal{R}(I)$ for every positive integer m if and only if $(2n,n) \in \mathcal{R}(I)$.
- 25 (9) $\mathcal{R}(I \times J) = \mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J).$

26

27

28

29

Proof. (1)–(4) all follow easily from the definitions.

(5) If m < n, then $(m+1, n) \in \mathcal{R}(I)$ by (1). For m > n, suppose that $x^{m+1} \in I$ for $x \in R$. Then $x^{n+1} \in I$ since I is (m+1, n+1)-closed. Thus $x^m \in I$ since $m \ge n+1$, and hence $x^n \in I$ since I is (m, n)-closed. Thus I is (m+1, n)-closed.

30 (6) Suppose that $x^{n+2} \in I$ for $x \in R$. Then $(x^2)^n = x^{2n} \in I$ since $2n \ge n+2$ 31 because $n \ge 2$. Hence $x^4 = (x^2)^2 \in I$ since I is (n, 2)-closed. But then $x^{n+1} \in I$ 32 since $n \ge 3$. Thus $x^2 \in I$ since I is (n + 1, 2)-closed. Hence I is (n + 2, 2)-closed. 33 Similarly, $(k, 2) \in \mathcal{R}(I)$ for every integer $k \ge n+3$. So by (2), I is (k, 2)-closed for 34 every positive integer k.

35 (7) Let $x^{m+1} \in I$ for $x \in R$. Then $(x^2)^m = x^{2m} \in I$, and hence $x^{2n} = (x^2)^n \in I$ 36 since I is (m, n)-closed. Thus $x^m \in I$ since $2n \leq m$, and hence $x^n \in I$ since I is 37 (m, n)-closed. Thus I is (m+1, n)-closed. Similarly, $(k, n) \in \mathcal{R}(I)$ for every integer 38 $k \geq n$, and hence $(k, n) \in \mathcal{R}(I)$ for every positive integer k by (2).

On (m, n)-closed ideals of commutative rings

(8) This follows directly from (7). 1 (9) Clearly $I \times J$ is (m, n)-closed if and only if I and J are both (m, n)-closed. 2 Thus $\mathcal{R}(I \times J) = \mathcal{R}(I) \cap \mathcal{R}(J)$. That $\mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J)$ follows from Corol-3 lary 2.4(1). 4 П **Remark 4.2.** (a) The $m \neq n$ hypothesis is needed in Theorem 4.1(5) since $(n, n) \in$ 5 6 $\mathcal{R}(I)$ for every positive integer n. (b) The $n \geq 3$ hypothesis is needed in Theorem 4.1(6). For n = 1, we have 7 $(1,2), (2,2) \in \mathcal{R}(I)$ for every proper ideal I of R, but, in general, $(3,2) \notin \mathcal{R}(I)$. 8 For n = 2, we have $(2, 2), (3, 2) \in \mathcal{R}(I)$ does not imply $(4, 2) \in \mathcal{R}(I)$. For exam-9 ple, let $R = \mathbb{Z}$ and $I = 16\mathbb{Z}$. Then $(2, 2), (3, 2) \in \mathcal{R}(I)$, but $(4, 2) \notin \mathcal{R}(I)$. 10 (c) The inclusion in Theorem 4.1(9) may be strict. For example, let $R = \mathbb{Z}, I = 8\mathbb{Z},$ 11 and $J = 16\mathbb{Z}$. Then $(3,2) \in \mathcal{R}(J) = \mathcal{R}(I \cap J)$. However, $(3,2) \notin \mathcal{R}(I)$; so 12 $\mathcal{R}(I) \cap \mathcal{R}(J) \subsetneq \mathcal{R}(I \cap J).$ 13 (d) More generally, $\mathcal{R}(I \times J) = \mathcal{R}(I) \cap \mathcal{R}(J)$ for all ideals I and J of commutative 14 rings R and S, respectively. 15 Let I be a proper ideal of a commutative ring R and m and n positive integers. 16 We define $f_I(m) = \min\{n \mid I \text{ is } (m, n) - \text{closed}\} \in \{1, \dots, m\}$ and $g_I(n) = \sup\{m \mid I\}$ 17 18 is (m, n)-closed} $\in \{n, n+1, \ldots\} \cup \{\infty\}$; so $f_I : \mathbb{N} \to \mathbb{N}$ and $g_I : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$. The columns (respectively, rows) of $\mathcal{R}(I)$ determine f_I (respectively, g_I). Thus either 19 function f_I or g_I is determined by the other, and either function determines $\mathcal{R}(I)$ by 20 Theorem 4.1(2). It is sometimes useful to view f_I (respectively, g_I) as an N-valued 21 (respectively, $\mathbb{N} \cup \{\infty\}$ -valued) non-decreasing sequence $f_I = (f_I(m))$ (respectively, 22 $(g_I = (g_I(n)))$. Note that $f_I = (1, 1, 1, \ldots)$ if and only if $g_I = (\infty, \infty, \infty, \ldots)$, 23 if and only if $\sqrt{I} = I$. If we define $\mathcal{R}(R) = \mathbb{N} \times \mathbb{N}$, then $f_R = (1, 1, 1, ...)$ and 24 $q_R = (\infty, \infty, \infty, \dots)$. Also, f_I is eventually constant if and only if q_I is eventually 25 constant, if and only if g_I is eventually ∞ . We next give some elementary properties 26 of the two functions f_I and g_I . 27

Theorem 4.3. Let R be a commutative ring, I a proper ideal of R, and m and n positive integers. Let $f_I(m) = \min\{n \mid I \text{ is } (m, n)\text{-closed}\}$ and $g_I(n) = \sup\{m \mid I \text{ is} (m, n)\text{-closed}\}$.

- 31 (1) $1 \le f_I(m) \le m$.
- 32 (2) $f_I(m) \le f_I(m+1)$.

33 (3) If $f_I(m) < m$, then either $f_I(m+1) = f_I(m)$ or $f_I(m+1) \ge f_I(m) + 2$.

- $34 \qquad (4) \ n \le g_I(n) \le \infty.$
- 35 (5) $g_I(n) \le g_I(n+1)$.
- 36 (6) If $g_I(n) > n$, then either $g_I(n+1) = g_I(n)$ or $g_I(n+1) \ge g_I(n) + 2$.
- Proof. (1) This is clear since $(n, n) \in \mathcal{R}(I)$ for every positive integer n by Theorem 4.1(1).
- 39 (2) This is clear by Theorem 4.1(2).

(3) Suppose that $f_I(m+1) = f_I(m) + 1$. Let $f_I(m) = n$; so m > n and 1 $f_I(m+1) = n+1$. Then $(m, n), (m+1, n+1) \in \mathcal{R}(I)$ and m > n; so $(m+1, n) \in \mathcal{R}(I)$ 2 by Theorem 4.1(5). Thus $f_I(m+1) \leq n$, a contradiction. 3 (4) This is also clear by Theorem 4.1(1). 4 (5) This is also clear by Theorem 4.1(2). 5 (6) The proof is similar to that of (3). 6 7 For $f, g: \mathbb{N} \to \mathbb{N} \cup \{\infty\}$, we define $f \leq g$ if and only if $f(n) \leq g(n)$ for every $n \in \mathbb{N}$. Thus $(f \lor g)(n) = \max\{f(n), g(n)\}$ and $(f \land g)(n) = \min\{f(n), g(n)\}$ for 8 9 every $n \in \mathbb{N}$. **Theorem 4.4.** Let R be a commutative ring and I and J proper ideals of R. Let 10 11 $f_I(m) = \min\{n \mid I \text{ is } (m, n) \text{-closed}\}$ and $g_I(n) = \sup\{m \mid I \text{ is } (m, n) \text{-closed}\}$. Then the following statements are equivalent. 12 13 (1) $\mathcal{R}(I) \subseteq \mathcal{R}(J).$ (2) $f_J \leq f_I$, i.e. $f_J(m) \leq f_I(m)$ for every positive integer m. 14 15 (3) $g_I \leq g_J$, i.e. $g_I(n) \leq g_J(n)$ for every positive integer n. **Proof.** It is clear that $(1) \Leftrightarrow (2)$ and $(2) \Leftrightarrow (3)$. 16 The next theorem relates f_I, f_J (respectively, g_I, g_J) and $f_{I \cap J}$ (respectively, 17 18 $g_{I\cap J}$). **Theorem 4.5.** Let R be a commutative ring and I and J proper ideals of R. Let 19 $f_I(m) = \min\{n \mid I \text{ is } (m, n) \text{-closed}\} \text{ and } g_I(n) = \sup\{m \mid I \text{ is } (m, n) \text{-closed}\}.$ 20 (1) $f_{I\cap J} \leq f_I \vee f_J$. 21 (2) $g_I \wedge g_J \leq g_{I \cap J}$. 22 (3) The following statements are equivalent. 23 (a) $f_{I\cap J} = f_I \vee f_J$ 24 (b) $g_{I\cap J} = g_I \wedge g_J$. 25 (c) $\mathcal{R}(I \cap J) = \mathcal{R}(I) \cap \mathcal{R}(J).$ 26 **Proof.** (1) Let $m \in \mathbb{N}, n_1 = f_I(m), n_2 = f_J(m)$, and $n = \max\{n_1, n_2\}$. Then 27 $(m,n) \in \mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J)$ by Theorem 4.1(2)(9). Thus $f_{I \cap J}(m) \leq n =$ 28 $(f_I \vee f_J)(m).$ 29 (2) The proof is similar to that of (1). 30 (3) (a) \Rightarrow (c) Suppose that $f_{I \cap J} = f_I \lor f_J$. Then $f_I, f_J \le f_{I \cap J}$; so $\mathcal{R}(I \cap J) \subseteq$ 31 32 $\mathcal{R}(I) \cap \mathcal{R}(J)$ by Theorem 4.4. Thus $\mathcal{R}(I \cap J) = \mathcal{R}(I) \cap \mathcal{R}(J)$ by Theorem 4.1(9). $(c) \Rightarrow (a)$ Suppose that $\mathcal{R}(I \cap J) = \mathcal{R}(I) \cap \mathcal{R}(J)$. Then $f_I, f_J \leq f_{I \cap J}$ by 33 Theorem 4.4; so $f_I \vee f_J \leq f_{I \cap J}$. Thus $f_{I \cap J} = f_I \vee f_J$ since $f_{I \cap J} \leq f_I \vee f_J$ by (1). 34 $(b) \Leftrightarrow (c)$ The proof is similar to that of $(a) \Leftrightarrow (c)$. 35

On (m, n)-closed ideals of commutative rings

1 The next result gives a case where $\mathcal{R}(I \cap J) = \mathcal{R}(I) \cap \mathcal{R}(J)$; its "moreover" 2 statement generalizes (1) \Leftrightarrow (2) of Theorem 3.4. Recall that two nonunits x and y 3 in an integral domain R are coprime if $xR \cap yR = xyR$.

Theorem 4.6. Let R be an integral domain and $x, y \in R$ coprime elements. Then $\mathcal{R}(xyR) = \mathcal{R}(xR \cap yR) = \mathcal{R}(xR) \cap \mathcal{R}(yR)$. Moreover, $f_{xyR} = f_{xR} \vee f_{yR}$ and $g_{xyR} = g_{xR} \wedge g_{yR}$.

Proof. By Theorem 4.1(9), we need only to show that $\mathcal{R}(xR \cap yR) \subseteq \mathcal{R}(xR) \cap$ 8 $\mathcal{R}(yR)$. We first show that $\mathcal{R}(xR \cap yR) \subseteq \mathcal{R}(xR)$. Let $(m, n) \in \mathcal{R}(xR \cap yR)$, and 9 suppose that $a^m \in xR$ for $a \in R$. Then $(ay)^m \in xR \cap yR = xyR$, and thus $(ay)^n \in$ 10 $xyR \subseteq xR$ since $xyR = xR \cap yR$ is (m, n)-closed. Hence $(ay)^n \in xR \cap y^nR = xy^nR$ 11 (this follows since x and y are coprime); so $a^n \in xR$. Thus xR is (m, n)-closed; so 12 $(m, n) \in \mathcal{R}(xR)$. Similarly, $(m, n) \in \mathcal{R}(yR)$; so $\mathcal{R}(xR \cap yR) \subseteq \mathcal{R}(xR) \cap \mathcal{R}(yR)$. 13 Hence $\mathcal{R}(xyR) = \mathcal{R}(xR \cap yR) = \mathcal{R}(xR) \cap \mathcal{R}(yR)$.

The functions f_I and g_I may be strictly increasing (see Example 4.8(d)). However, if R is a commutative Noetherian ring, then f_I and g_I are eventually constant (i.e. g_I is eventually ∞) for every proper ideal I of R (cf. Example 2.2(c)).

Theorem 4.7. Let R be a commutative ring, n a positive integer, and I an n-absorbing ideal of R. Then $f_I(m) \leq n$ for every positive integer m. Thus f_I and g_I are eventually constant. In particular, if R is Noetherian, then f_I and g_I are eventually constant for every proper ideal I of R.

Proof. This follows directly from Theorem 2.1(4). The "in particular" statement holds since every proper ideal of a commutative Noetherian ring is an *n*-absorbing ideal for some positive integer *n* by [1, Theorem 5.3].

Let R be an integral domain and $I = p^k R$, where p is a prime element of Rand k is a positive integer. Then Theorem 3.10 computes f_I and Theorem 3.11 computes g_I ; the general case for $I = p_1^{k_1} \cdots p_i^{k_i} R$ is given by Theorem 3.12.

27 We end this section by computing the f_I and g_I functions for several examples.

Example 4.8. (a) Let R be an integral domain and $I = p^{30}R$ for p a prime element of R. By Theorem 3.10, one may easily calculate that $f_I(m) = m$ for $1 \le m \le 6$, $f_I(7) = 6, f_I(8) = f_I(9) = 8, f_I(m) = 10$ for $10 \le m \le 14, f_I(m) = 15$ for $15 \le m \le 29$, and $f_I(m) = 30$ for $m \ge 30$. Using Theorem 3.11 (or the f_I function), one may easily calculate that $g_I(n) = n$ for $1 \le n \le 5, g_I(6) =$ $g_I(7) = 7, g_I(8) = g_I(9) = 9, g_I(n) = 14$ for $10 \le n \le 14, g_I(n) = 29$ for $15 \le n \le 29$, and $g_I(n) = \infty$ for $n \ge 30$.

(b) Let $R = \mathbb{Z}$ and $I = 1260000\mathbb{Z} = 2^{5}3^{2}5^{4}7\mathbb{Z}$. Then $I = I_{1} \cap I_{2} \cap I_{3} \cap I_{4}$, where $I_{1} = 2^{5}\mathbb{Z}, I_{2} = 3^{2}\mathbb{Z}, I_{3} = 5^{4}\mathbb{Z}$, and $I_{4} = 7\mathbb{Z}$. Let $f_{i} = f_{I_{i}}$ and $g_{i} = g_{I_{i}}$. Then $f_{1} = (1, 2, 3, 3, 5, 5, 5, \ldots), f_{2} = (1, 2, 2, 2, \ldots), f_{3} = (1, 2, 2, 4, 4, 4, \ldots),$

1	$f_4 = (1, 1, 1,)$ and $g_1 = (1, 2, 4, 4, \infty, \infty, \infty,), g_2 = (1, \infty, \infty, \infty,),$
2	$g_3 = (1, 3, 3, \infty, \infty, \infty,), g_4 = (\infty, \infty, \infty,)$ by Theorems 3.10 and 3.11,
3	respectively. Thus $f_I = (1, 2, 3, 4, 5, 5, 5,)$ and $g_I = (1, 2, 3, 4, \infty, \infty, \infty,)$
4	by Theorem 3.12.
5	(c) Let n be a positive integer, p_n be the nth positive prime integer, $R = \mathbb{Z}$,
6	and $I_n = 2^1 3^2 \cdots p_n^n \mathbb{Z}$. Then $f_{I_1} = (1, 1, 1, \ldots), g_{I_1} = (\infty, \infty, \infty, \ldots), f_{I_n} =$
7	$(1, 2, \ldots, n-1, n, n, n, \ldots)$, and $g_{I_n} = (1, 2, \ldots, n-1, \infty, \infty, \infty, \ldots)$ for $n \ge 2$
8	by Theorems 3.10–3.12.
9	(d) Let $R = \mathbb{Q}[\{X_n\}_{n \in \mathbb{N}}]$ and $I = (\{X_n^n\}_{n \in \mathbb{N}})$ as in Example 2.2(b). Then $f_I(m) =$
10	$g_I(m) = m$ for every positive integer m since I is (m, n) -closed if and only if
11	$1 \le m \le n$. Thus $f_I = g_I = (1, 2, 3, \dots, n-1, n, n+1, \dots)$.
12	The final example shows that for P a prime ideal (with $P^4 \subsetneq P^3$) and p a prime
13	element of an integral domain R, the ideals $I = p^4 R$ and $J = P^4$ may give distinct
14	functions f_I, f_J and g_I, g_J .
15	Example 4.9. (a) Let R be an integral domain and $I = p^4 R$, where p is a prime
16	element of R. One may easily compute that $f_I(1) = 1, f_I(2) = f_I(3) = 2$, and $f_I(m) = 4$ for $m \ge 4$. Thus a (1) = 1 o (2) = 0 (2) = 2 ord a (m) = 20 for
17 18	$f_I(m) = 4$ for $m \ge 4$. Thus $g_I(1) = 1, g_I(2) = g_I(3) = 3$, and $g_I(n) = \infty$ for
10	$n \ge 4$; so $f_I = (1, 2, 2, 4, 4, 4,)$ and $g_I = (1, 3, 3, \infty, \infty, \infty,)$.
19	(b) Let $R = \mathbb{Z}[X] + \sqrt[3]{2}X\mathbb{Z}[\sqrt[3]{2}][X]$. Then $P = (2, X, \sqrt[3]{2}X)$ is a prime ideal of R
20	and $P^4 \subsetneq P^3$. Note that $J = P^4$ is not $(3,2)$ -closed since $(\sqrt[3]{2}X)^3 = 2X^3 \in J$
21	and $(\sqrt[3]{2}X)^2 \notin J$. Also, $2^4 \in J$ and $2^3 \notin J$; so J is not (4,3)-closed. Clearly, J
22	is $(m, 4)$ -closed for every positive integer m. Thus $f_J(m) = m$ for $1 \le m \le 3$
23	and $f_J(m) = 4$ for $m \ge 4$, and hence $g_J(n) = n$ for $1 \le n \le 3$ and $g_J(n) = \infty$
24	for $n \ge 4$; so $f_J = (1, 2, 3, 4, 4, 4,)$ and $g_J = (1, 2, 3, \infty, \infty, \infty,)$. Thus
25	$f_I < f_J$ and $g_J < g_I$, where f_I and g_I are from (a).

References 26

27

28

29

31

32

33

34

35

36

37

38

- [1] D. F. Anderson and A. Badawi, On *n*-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
- [2] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Collog. 19(Spec 1) (2012) 1017–1040. 30
 - [3] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra **36** (2008) 686–696.
 - [4] D. F. Anderson and S. T. Chapman, How far is an element from being prime? J. Algebra Appl. 9 (2010) 779-789.
 - [5] D. F. Anderson and S. T. Chapman, On bounding measures of primeness in integral domains, Int. J. Algebra Comput. 22 (2012), Article ID: 1250040, 15pp.
 - [6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
- [7] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative 39 rings, Bull. Korean. Math. Soc. 51 (2014) 1163-1173. 40
- 41 [8] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semir-42 ings, Kyungpook Math. J. 52 (2012) 91-97.

 $On \ (m, n)$ -closed ideals of commutative rings

1	[9]	A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and
2		their applications to rings, Semigroup Forum 86 (2013) 83–91.
3	[10]	A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, <i>Thai</i>
4		J. Math. 9 (2011) 577–584.
5	[11]	M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra
6		40 (2012) 1268–1279.
7	[12]	R. Gilmer, Multiplicative Ideal Theory, Queens Papers in Pure and Applied Mathe-
8		matics, Vol. 90 (Queens University, Kingston, 1992).
9	[13]	J. Huckaba, <i>Rings with Zero-Divisors</i> (Marcel Dekker, New York/Basil, 1988).
10	[14]	I. Kaplansky, Commutative Rings, rev. edn. (University of Chicago Press, Chicago,
11		1974).
12	[15]	K. N. Kyun and L. Yang, On right quasi-duo rings which are π -regular, Bull. Korean
13		Math. Soc. 37 (2000) 217–227.
14	[16]	S. Payrovi and S. Bahaei, On the 2-absorbing ideals Int. Math. Forum 7 (2012)

[16] S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012)
 265–271.