On (m, n)-closed ideals of commutative rings

David F. Anderson
Department of Mathematics
The University of Tennessee
Knoxville, TN 37996-1320, USA
anderson@math.utk.edu
Ayman Badawi
Department of Mathematics \& Statistics The American University of Sharjah
P. O. Box 26666, Sharjah, United Arab Emirates
abadawi@aus.edu
Received 27 July 2015
Accepted 28 December 2015
Published
Communicated by

Abstract

Let R be a commutative ring with $1 \neq 0$, and let I be a proper ideal of R. Recall that I is an n-absorbing ideal if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$, then there are n of the x_{i} 's whose product is in I. We define I to be a semi- n-absorbing ideal if $x^{n+1} \in I$ for $x \in R$ implies $x^{n} \in I$. More generally, for positive integers m and n, we define I to be an (m, n)-closed ideal if $x^{m} \in I$ for $x \in R$ implies $x^{n} \in I$. A number of examples and results on (m, n)-closed ideals are discussed in this paper.

Keywords: Prime ideal; radical ideal; 2-absorbing ideal; n-absorbing ideal.
Mathematics Subject Classification: Primary: 13A15; Secondary: 13F05, 13G05

1. Introduction

Let R be a commutative ring with $1 \neq 0, I$ a proper ideal of R, and n a positive integer. As in [1], I is called an n-absorbing ideal of R if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$, then there are n of the x_{i} 's whose product is in I. Thus a 1 -absorbing ideal is just a prime ideal. In this paper, we define I to be a semi-n-absorbing ideal of R if $x^{n+1} \in I$ for $x \in R$ implies $x^{n} \in I$. Clearly, an n-absorbing ideal is also a semi- n-absorbing ideal, and a semi-1-absorbing ideal is just a radical (semiprime) ideal. Hence n-absorbing (respectively, semi- n-absorbing) ideals generalize prime (respectively, radical) ideals. More generally, for positive integers m and n, we define I to be an (m, n)-closed ideal of R if $x^{m} \in I$ for $x \in R$
implies $x^{n} \in I$. Thus I is a semi- n-absorbing ideal if and only if I is an $(n+1, n)$ closed ideal, and I is a radical ideal if and only if I is a $(2,1)$-closed ideal. In fact, an n-absorbing ideal is (m, n)-closed for every positive integer m. Clearly, a proper ideal is (m, n)-closed for $1 \leq m \leq n$; so we often assume that $1 \leq n<m$.

The concept of 2 -absorbing ideals was introduced in [6] and then extended to n-absorbing ideals in [1]. Several related concepts, such as 2 -absorbing primary ideals, have been studied in $[7-10,16]$. Other generalizations of prime ideals are investigated in $[3-5,11]$.

In Sec. 2, we give the basic properties of semi- n-absorbing ideals and (m, n)closed ideals. We also determine when every proper ideal of R is (m, n)-closed for integers $1 \leq n<m$. In Sec. 3, we specialize to the case of principal ideals in integral domains. For an integral domain R, we determine $\mathcal{R}(I)=\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid I$ is (m, n)-closed $\}$ for $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers. In Sec. 4 , we continue the study of (m, n)closed ideals and give several examples to illustrate earlier results. For a proper ideal I of R, we investigate the two functions f_{I} and g_{I} defined by $f_{I}(m)=\min \{n \mid I$ is (m, n)-closed $\}$ and $g_{I}(n)=\sup \{m \mid I$ is (m, n)-closed $\}$.

We assume throughout that all rings are commutative with $1 \neq 0$ and that $f(1)=1$ for all ring homomorphisms $f: R \rightarrow T$. For such a ring $R, \operatorname{dim}(R)$ denotes the Krull dimension of R, \sqrt{I} denotes the radical of an ideal I of R, and $\operatorname{nil}(R), Z(R)$, and $U(R)$ denote the set of nilpotent elements, zero-divisors, and units of R, respectively; and R is reduced $\operatorname{if} \operatorname{nil}(R)=\{0\}$. Recall that R is von Neumann regular if for every $x \in R$, there is a $y \in R$ such that $x^{2} y=x$, and that R is π-regular if for every $x \in R$, there are $y \in R$ and a positive integer n such that $x^{2 n} y=x^{n}$. Moreover, R is π-regular (respectively, von Neumann regular) if and only if $\operatorname{dim}(R)=0$ (respectively, R is reduced and $\operatorname{dim}(R)=0$) ([13, Theorem 3.1, p. 10]). Thus R is π-regular if and only if $R / \operatorname{nil}(R)$ is von Neumann regular. As usual, $\mathbb{N}, \mathbb{Z}, \mathbb{Z}_{n}$, and \mathbb{Q} will denote the positive integers, integers, integers modulo n, and rational numbers, respectively. For any undefined concepts or terminology, see [12, 13], or [14].

2. Properties of (m, n)-Closed Ideals

We start with the following observations and examples. Recall that if M_{1}, \ldots, M_{n} are maximal ideals of R, then $M_{1} \cdots M_{n}$ is an n-absorbing ideal of R ($[1$, Theorem 2.9]); an analogous result holds for semi- n-absorbing ideals.

Theorem 2.1. Let R be a commutative ring.
(1) A radical ideal of R is (m, n)-closed for all positive integers m and n.
(2) An n-absorbing ideal of R is a semi-n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R for every positive integer n.
(3) An (m, n)-closed ideal of R is $\left(m^{\prime}, n^{\prime}\right)$-closed for all positive integers $m^{\prime} \leq m$ and $n^{\prime} \geq n$.
(4) An n-absorbing ideal of R is (m, n)-closed for every positive integer m.
(5) Let P_{1}, \ldots, P_{k} be radical ideals of R. Then $P_{1} \cdots P_{k}$ is (m, n)-closed for all integers $m \geq 1$ and $n \geq \min \{m, k\}$. In particular, $P_{1} \cdots P_{k}$ is a semi-k-absorbing ideal (i.e. $(k+1, k)$-closed ideal) of R.

Proof. (1)-(3) follow directly from the definitions.
(4) Let I be an n-absorbing ideal of R for n a positive integer. Suppose that $x^{m} \in I$ for $x \in R$ and $m>n$ an integer. Then $x^{n} \in R$ by [1, Theorem 2.1(a)]; so I is (m, n)-closed for $m>n$. Clearly, I is (m, n)-closed for every integer $1 \leq m \leq n$; so I is (m, n)-closed for every positive integer m.
(5) Let $x^{m} \in P_{1} \cdots P_{k}$ for $x \in R$. Then $x^{m} \in P_{i}$ for every $1 \leq i \leq k$, and thus $x \in P_{i}$ since P_{i} is a radical ideal of R. Hence $x^{k} \in P_{1} \cdots P_{k}$; so $x^{n} \in P_{1} \cdots P_{k}$ for $n \geq \min \{m, k\}$.

The following examples show that for every integer $n \geq 2$, there is a semi- n absorbing ideal (i.e. $(n+1, n)$-closed ideal) that is neither a radical ideal nor an n-absorbing ideal, and that there is an ideal that is not a semi- n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) for any positive integer n.

Example 2.2. (a) Let $R=\mathbb{Z}, n \geq 2$ an integer, and $I=2 \cdot 3^{n} \mathbb{Z}$. Then I is a semi- n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R by Theorem 2.1(5) (let $P_{1}=6 \mathbb{Z}$ and $\left.P_{2}=\cdots=P_{n}=3 \mathbb{Z}\right)$. In fact, I is a semi- m-absorbing ideal for every integer $m \geq n$. However, $\left(2 \cdot 3^{n-1}\right)^{2} \in I$ and $2 \cdot 3^{n-1} \notin I$; so I is not a radical ideal of R. Moreover, $2 \cdot 3^{n} \in I, 3^{n} \notin I$, and $2 \cdot 3^{n-1} \notin I$; so I is not an n-absorbing ideal of R (but, I is an $(n+1)$-absorbing ideal of R). Note that for $n=1, I=6 \mathbb{Z}$ is a semi-1-absorbing ideal (i.e. radical ideal) of R, but not a 1-absorbing ideal (i.e. prime ideal) of R.
(b) Let $R=\mathbb{Q}\left[\left\{X_{n}\right\}_{n \in \mathbb{N}}\right]$ and $I=\left(\left\{X_{n}^{n}\right\}_{n \in \mathbb{N}}\right)$. Then $X_{n+1}^{n+1} \in I$ and $X_{n+1}^{n} \notin I$ for every positive integer n; so I is not a semi- n-absorbing ideal (i.e. $(n+1, n)$ closed ideal) for any positive integer n. Thus I is (m, n)-closed if and only if $1 \leq m \leq n$.
(c) Let R be a commutative Noetherian ring. Then every proper ideal of R is an n-absorbing ideal of R, and hence a semi- n-absorbing ideal of R, for some positive integer n ([1, Theorem 5.3]). Thus, by Theorem 2.1(4), for every proper ideal I of R, there is a positive integer n such that I is (m, n)-closed for every positive integer m. Note that the ring in (b) is not Noetherian.
(d) Clearly, an n-absorbing ideal of R is also an $(n+1)$-absorbing ideal of R. However, this need not be true for semi- n-absorbing ideals. For example, it is easily seen that $I=16 \mathbb{Z}$ is a semi-2-absorbing ideal (i.e. (3,2)-closed ideal) of \mathbb{Z}, but not a semi-3-absorbing ideal (i.e. (4, 3)-closed ideal) of \mathbb{Z}.
(e) Let R be a valuation domain. Then a radical ideal of R is also a prime ideal of $R([12$, Theorem 17.1]), i.e. a semi-1-absorbing ideal of R is a 1 -absorbing ideal of R. However, a semi- n-absorbing ideal of R need not be an n-absorbing ideal
of R for $n \geq 2$. For example, let $R=\mathbb{Z}_{(2)}$ and $I=16 \mathbb{Z}_{(2)}$. Then R is a DVR, and it is easily verified that I is a semi-2-absorbing ideal (i.e. (3,2)-closed ideal) of R, but not a 2 -absorbing ideal of R.

In general, a product of (m, n)-closed ideals need not be (m, n)-closed (e.g. a product of radical ideals need not be a radical ideal). The next result generalizes Theorem 2.1(5) (also, see Theorem 4.1(9)).

Theorem 2.3. Let R be a commutative ring, $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{k}$ positive integers, and I_{1}, \ldots, I_{k} be ideals of R such that I_{i} is $\left(m_{i}, n_{i}\right)$-closed for $1 \leq i \leq k$.
(1) $I_{1} \cap \cdots \cap I_{k}$ is (m, n)-closed for all positive integers $m \leq \min \left\{m_{1}, \ldots, m_{k}\right\}$ and $n \geq \min \left\{m, \max \left\{n_{1}, \ldots, n_{k}\right\}\right\}$.
(2) $I_{1} \cdots I_{k}$ is (m, n)-closed for all positive integers $m \leq \min \left\{m_{1}, \ldots, m_{k}\right\}$ and $n \geq \min \left\{m, n_{1}+\cdots+n_{k}\right\}$.

Proof. (1) Let $x^{m} \in I_{1} \cap \cdots \cap I_{k}$ for $x \in R$, $m \leq \min \left\{m_{1}, \ldots, m_{k}\right\}$, and $1 \leq$ $i \leq k$. Then $x^{m} \in I_{i}$, and thus $x^{m_{i}} \in I_{i}$; so $x^{n_{i}} \in I_{i}$ since I_{i} is $\left(m_{i}, n_{i}\right)$-closed. Hence $x^{n} \in I_{1} \cap \cdots \cap I_{k}$ for $n \geq \max \left\{n_{1}, \ldots, n_{k}\right\}$. Thus $x^{n} \in I_{1} \cap \cdots \cap I_{k}$ for $n \geq \min \left\{m, \max \left\{n_{1}, \ldots, n_{k}\right\}\right\}$.
(2) Let $x^{m} \in I_{1} \cdots I_{k}$ for $x \in R, m \leq \min \left\{m_{1}, \ldots, m_{k}\right\}$, and $1 \leq i \leq k$. Then $x^{m} \in I_{i}$, and thus $x^{m_{i}} \in I_{i}$; so $x^{n_{i}} \in I_{i}$ since I_{i} is $\left(m_{i}, n_{i}\right)$-closed. Hence $x^{n_{1}+\cdots+n_{k}} \in I_{1} \cdots I_{k}$; so $x^{n} \in I_{1} \cdots I_{k}$ for $n \geq n_{1}+\cdots+n_{k}$. Thus $x^{n} \in I_{1} \cdots I_{k}$ for $n \geq \min \left\{m, n_{1}+\cdots+n_{k}\right\}$.

Recall that two ideals I and J of a commutative ring R are comaximal if $I+J=$ R, and in this case, $I J=I \cap J$.

Corollary 2.4. Let R be a commutative ring, m and n positive integers, and I_{1}, \ldots, I_{k} be (m, n)-closed ideals (respectively, semi-n-absorbing ideals) of R.
(1) $I_{1} \cap \cdots \cap I_{k}$ is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.
(2) If I_{1}, \ldots, I_{k} are pairwise comaximal, then $I_{1} \cdots I_{k}$ is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.

Let m and n be positive integers. In [1], we defined a proper ideal I of a commutative ring R to be a strongly n-absorbing ideal of R if whenever $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R, then there are n of the I_{i} 's whose product is in I. Clearly, a strongly n-absorbing ideal is also an n-absorbing ideal, and in [1], we gave several cases where the two concepts are equivalent and conjectured that they are always equivalent. Analogously, we define a proper ideal I of R to be a strongly semi-n-absorbing ideal of R if $J^{n} \subseteq I$ whenever $J^{n+1} \subseteq I$ for an ideal J of R, and more generally, we say that a proper ideal I of R is a strongly (m, n)-closed ideal of R if $J^{n} \subseteq I$ whenever $J^{m} \subseteq I$ for an ideal J of R. Clearly, every proper ideal of R is strongly (m, n)-closed for $1 \leq m \leq n$, a strongly (m, n)-closed ideal of R is
an (m, n)-closed ideal of R, and an ($m, 1$)-closed ideal of R is also strongly ($m, 1$)closed. However, an (m, n)-closed ideal of R need not be a strongly (m, n)-closed ideal of R; we have the following example.

Example 2.5. Let $R=\mathbb{Z}[X, Y], I=\left(X^{2}, 2 X Y, Y^{2}\right)$, and $J=\sqrt{I}=(X, Y)$. Suppose that $a^{m} \in I$ for $a \in R$ and m a positive integer. Then $a \in \sqrt{I}$, and thus $a=b X+c Y$ for some $b, c \in R$. Hence $a^{2}=(b X+c Y)^{2}=b^{2} X^{2}+2 b c X Y+c^{2} Y^{2} \in I$, and thus I is an ($m, 2$)-closed ideal of R for every positive integer m. It is easily checked that $J^{m} \subseteq I$ for every integer $m \geq 3$. However, $J^{2} \nsubseteq I$ since $X Y \notin I$; so I is not a strongly $(m, 2)$-closed ideal of R for any integer $m \geq 3$.

In view of Example 2.5, we have the following result.
Theorem 2.6. Let R be a commutative ring, m a positive integer, I an ($m, 2$)closed ideal of R, and J an ideal of R.
(1) If $J^{m} \subseteq I$, then $2 J^{2} \subseteq I$.
(2) Suppose that $2 \in U(R)$. If $J^{m} \subseteq I$, then $J^{2} \subseteq I$ (i.e. I is a strongly $(m, 2)$-closed ideal of R).

Proof. (1) Let $x, y \in J$. Then $x^{m}, y^{m},(x+y)^{m} \in I$ since $J^{m} \subseteq I$, and thus $x^{2}, y^{2},(x+y)^{2} \in I$ since I is $(m, 2)$-closed. Hence $2 x y=(x+y)^{2}-x^{2}-y^{2} \in I$, and thus $2 J^{2} \subseteq I$.
(2) This follows directly from (1).

Let I be an (m, n)-closed ideal of a commutative ring R. By Example 2.5, it is possible that $x^{n} \in I$ for every $x \in J=\sqrt{I}$, but $J^{n} \nsubseteq I$. It is also possible that $x^{n} \in I$ for every $x \in J=\sqrt{I}$, but $J^{m} \nsubseteq I$. Finally, it is possible to have $x^{m} \notin I$ for some $x \in \sqrt{I}$. We have the following examples.

Example 2.7. (a) Let $R=\mathbb{Z}_{2}[X, Y, Z], I=\left(X^{2}, Y^{2}, Z^{2}\right)$, and $J=\sqrt{I}=$ (X, Y, Z). Let $a \in J$. Then $a=b X+c Y+d Z$ for some $b, c, d \in R$. Thus $a^{2}=b^{2} X^{2}+c^{2} Y^{2}+d^{2} Z^{2} \in I$; so I is a (3,2)-closed ideal of R. However, $J^{3} \nsubseteq I$ since $X Y Z \notin I$.
(b) Let $R=\mathbb{Z}$ and $I=16 \mathbb{Z}$. Then I is a (3,2)-closed ideal of R. However, $2 \in$ $\sqrt{I}=2 \mathbb{Z}$, but $2^{3}=8 \notin I$.

The next theorem is the (m, n)-closed analog for well-known localization results about prime, radical, and n-absorbing ideals ([1, Theorem 4.1]).

Theorem 2.8. Let R be a commutative ring, m and n positive integers, I an (m, n)-closed ideal of R, and S a multiplicatively closed subset of R such that $I \cap$ $S=\emptyset$.
(1) I_{S} is an (m, n)-closed ideal of R_{S}. In particular, if I is a semi-n-absorbing ideal of R, then I_{S} is a semi-n-absorbing ideal of R_{S}.
(2) If $n=2,2 \in S$, and $J^{m} \subseteq I_{S}$ for an ideal J of R_{S}, then $J^{2} \subseteq I_{S}$ (i.e. I_{S} is a strongly $(m, 2)$-closed ideal of $\left.R_{S}\right)$.

Proof. (1) Let $x^{m} \in I_{S}$ for $x \in R_{S}$. Then $x=r / s$ for some $r \in R$ and $s \in S$, and thus $x^{m}=r^{m} / s^{m}=i / t$ for some $i \in I$ and $t \in S$. Hence $r^{m} t z=s^{m} i z \in I$ for some $z \in S$, and thus $(r t z)^{m} \in I$. Hence $(r t z)^{n} \in I$ since I is (m, n)-closed, and thus $x^{n}=r^{n} / s^{n}=r^{n} t^{n} z^{n} / s^{n} t^{n} z^{n} \in I_{S}$. Hence I_{S} is an (m, n)-closed ideal of R_{S}. The "in particular" statement is clear.
(2) Suppose that $J^{m} \subseteq I_{S}$ for an ideal J of R_{S}. Then $2 \in U\left(R_{S}\right)$ since $2 \in S$, and thus $J^{2} \subseteq I_{S}$ by Theorem 2.6(2).

Corollary 2.9. Let R be a commutative ring, I a proper ideal of R, and m and n positive integers. Then I is an (m, n)-closed ideal of R if and only if I_{P} is an (m, n)-closed ideal of R_{P} for every prime (or maximal) ideal of R containing I. In particular, I is a semi-n-absorbing ideal if and only if I is locally a semi-n-absorbing ideal.

Proof. (\Rightarrow) This follows directly from Theorem 2.8(1).
(\Leftarrow) Let $x^{m} \in I$ for $x \in R, J=\left\{r \in R \mid r x^{n} \in I\right\}$ (an ideal of R), and P be a prime ideal of R with $I \subseteq P$. Then $(x / 1)^{m} \in I_{P}$; so $(x / 1)^{n} \in I_{P}$ since I_{P} is (m, n)-closed. Thus $s x^{n} \in I$ for some $s \in R \backslash P$; so $J \nsubseteq P$. Clearly, $J \nsubseteq Q$ for every prime ideal Q of R with $I \nsubseteq Q$. Hence $J=R$; so $x^{n} \in I$. Thus I is (m, n)-closed.

The "in particular" statement is clear.
The next theorem and corollary extend well-known results about prime, radical, and n-absorbing ideals ([1, Theorem 4.2, Corollary 4.3]) to (m, n)-closed ideals; their proofs are left to the reader.

Theorem 2.10. Let R and T be commutative rings, m and n positive integers, and $f: R \rightarrow T$ a homomorphism.
(1) If J is an (m, n)-closed ideal (respectively, semi- n-absorbing ideal) of T, then $f^{-1}(J)$ is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.
(2) If f is surjective and I is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R containing kerf, then $f(I)$ is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of T.

Corollary 2.11. Let m and n be positive integers.
(1) Let $R \subseteq T$ be an extension of commutative rings. If J is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of T, then $J \cap R$ is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.
(2) Let $I \subseteq J$ be proper ideals of a commutative ring R. Then J / I is an (m, n) closed ideal (respectively, semi-n-absorbing ideal) of R / I if and only if J is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.

Recall that an ideal of $R \times S$ has the form $I \times J$ for I an ideal of R and J an ideal of S. For a ring T, it will be convenient to define the improper ideal T to be an $(\infty, 1)$-closed ideal of T; then the following theorem holds for all ideals of $R \times S$ (also, see Theorem 4.1(9) and Remark 4.2(d)). The n-absorbing ideal analog of the next theorem was given in [1, Theorem 4.7]; its proof is also left to the reader.

Theorem 2.12. Let R and S be commutative rings, I an $\left(m_{1}, n_{1}\right)$-closed ideal of R, and J an $\left(m_{2}, n_{2}\right)$-closed ideal of S. Then $I \times J$ is an (m, n)-closed ideal of $R \times S$ for all positive integers $m \leq \min \left\{m_{1}, m_{2}\right\}$ and $n \geq \max \left\{n_{1}, n_{2}\right\}$.

It is well-known that every proper ideal of a commutative ring R is a prime ideal if and only if R is a field (this is the very first exercise in [14]), and it is easily shown that every proper ideal of R is a radical ideal if and only if R is von Neumann regular. Our next goal is to determine when every proper ideal of R is (m, n)-closed. The following result is included for further reference.

Theorem 2.13. Let R be a commutative ring and n a positive integer.
(1) Every proper ideal of R is a prime ideal if and only if R is a field.
(2) Every proper ideal of R is a radical ideal if and only if R is von Neumann regular.
(3) If every proper ideal of R is an n-absorbing ideal, then $\operatorname{dim}(R)=0$ and R has at most n maximal ideals.

Proof. (1) This result is well known ([14, Exercise 1, p. 7]).
(2) First, suppose that every proper ideal of R is a radical ideal. Let $x \in R$ be a nonunit. Then $x^{2} R$ is a radical ideal, and thus $x \in x^{2} R$; so $x=x^{2} y$ for some $y \in R$. If $x \in U(R)$, then $x=x^{2} x^{-1}$ with $x^{-1} \in R$. Hence R is von Neumann regular.

Conversely, suppose that R is von Neumann regular. Let I be a proper ideal of R and $x^{2} \in I$ for $x \in R$. Then $x=x^{2} y$ for some $y \in R$, and thus $x=x^{2} y \in I$. Hence I is a radical ideal.
(3) This is [1, Theorem 5.9].

Theorem 2.14. Let R be a commutative ring and m and n integers with $1 \leq n<$ m. Then the following statements are equivalent.
(1) Every proper ideal of R is an (m, n)-closed ideal of R.
(2) $\operatorname{dim}(R)=0$ and $w^{n}=0$ for every $w \in \operatorname{nil}(R)$.

Proof. (1) $\Rightarrow(2)$ Let $w \in \operatorname{nil}(R)$. Then $w^{m} R$ is an (m, n)-closed ideal of R; so $w^{n} \in$ $w^{m} R$ since $w^{m} \in w^{m} R$. Thus $w^{n}=w^{m} z$ for some $z \in R$. Hence $w^{n}\left(1-w^{m-n} z\right)=0$, and thus $w^{n}=0$ since $1-w^{m-n} z \in U(R)$ because $w^{m-n} z \in \operatorname{nil}(R)$ since $m>n$. Suppose, by way of contradiction, that $\operatorname{dim}(R) \geq 1$. Then there are prime ideals $P \subsetneq Q$ of R. Let $x \in Q \backslash P$. As above, $x^{n} \in x^{m} R$; so $x^{n}=x^{m} y$ for some $y \in R$. Thus $x^{n}\left(1-x^{m-n} y\right)=0 \in P$, and hence $1-x^{m-n} y \in P \subseteq Q$ since $x \in Q \backslash P$. But then $1 \in Q$ since $x^{m-n} y \in Q$, a contradiction. Thus $\operatorname{dim}(R)=0$.
$(2) \Rightarrow(1)$ Let I be a proper ideal of R, and assume that $x^{m} \in I$ for $x \in R$. Then R is π-regular since $\operatorname{dim}(R)=0$, and thus $x=e u+w$ for some idempotent $e \in R, u \in U(R)$, and $w \in \operatorname{nil}(R)$ by [15, Theorem 13]. If $n=1$, then R is reduced, and thus R is von Neumann regular since $\operatorname{dim}(R)=0$. In this case, every proper ideal of R is a radical ideal by Theorem 2.13(2), and hence I is ($m, 1$)closed. Thus we may assume that $n \geq 2$. Let $k \geq n$; so $w^{k}=0$. Then $x^{k}=$ $(e u+w)^{k}=e u^{k}+k e u^{k-1} w+\cdots+k e u w^{k-1}=e\left(u^{k}+k u^{k-1} w+\cdots+k u w^{k-1}\right)$. Hence $v_{k}=u^{k}+k u^{k-1} w+\cdots+k u w^{k-1} \in U(R)$ since $u \in U(R), w \in \operatorname{nil}(R)$, and $k \geq 2$; and thus $x^{k}=e v_{k}$. In particular, $x^{m}=e h \in I$ with $h \in U(R)$ since $m>n$, and hence $e=h^{-1} x^{m} \in I$. Thus $x^{k}=e v_{k} \in I$ for every integer $k \geq n$. Hence I is (m, n)-closed.

In light of Theorem 2.14, and the fact that an (m, n)-closed ideal is also $\left(m^{\prime}, n\right)$ closed for every positive integer $m^{\prime} \leq m$, we have the following results.

Theorem 2.15. Let R be a commutative ring and n a positive integer. Then the following statements are equivalent.
(1) Every proper ideal of R is (m, n)-closed for every positive integer m.
(2) There is an integer $m>n$ such that every proper ideal of R is (m, n)-closed.
(3) For every proper ideal I of R, there is an integer $m_{I}>n$ such that I is $\left(m_{I}, n\right)$ closed.
(4) Every proper ideal of R is a semi-n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R.
(5) $\operatorname{dim}(R)=0$ and $w^{n}=0$ for every $w \in \operatorname{nil}(R)$.

Proof. Clearly, $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$, and $(4) \Rightarrow(5)$ follows from Theorem 2.14. Finally, $(5) \Rightarrow(1)$ follows from Theorem 2.14 for $m>n$, and from the fact that every proper ideal is (m, n)-closed for $1 \leq m \leq n$.

Corollary 2.16. Let R be a reduced commutative ring. Then the following statements are equivalent.
(1) Every proper ideal of R is a radical ideal.
(2) Every proper ideal of R is (m, n)-closed for all positive integers m and n.
(3) There is a positive integer n such that every proper ideal of R is (m, n)-closed for every integer $m \geq n$.
(4) There is a positive integer n such that every proper ideal I of R is $\left(m_{I}, n\right)$-closed for some integer $m_{I}>n$.
(5) There is a positive integer n such that every proper ideal of R is a semi-nabsorbing ideal (i.e. $(n+1, n)$-closed ideal) of R.
(6) R is a von Neumann regular ring.

Moreover, if R is an integral domain and any of the above conditions hold, then R is a field.

Proof. Clearly, $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$, and $(5) \Rightarrow(6)$ by Theorem 2.14 since a reduced commutative ring R with $\operatorname{dim}(R)=0$ is von Neumann regular. Also, $(6) \Rightarrow(1)$ by Theorem $2.13(2)$. The "moreover" statement holds since an integral domain is von Neumann regular if and only if it is a field.

Corollary 2.17. Let R be a reduced commutative ring and n a positive integer. Then every proper ideal of R is an n-absorbing ideal of R if and only if R is isomorphic to the direct product of at most n fields.

Proof. $(\Rightarrow) R$ is von Neumann regular by Corollary 2.16 since an n-absorbing ideal is a semi- n-absorbing ideal, and R has at most n maximal ideals by Theorem 2.13(b). Thus R is isomorphic to the direct product of at most n fields by the Chinese Remainder Theorem.
(\Leftarrow) This follows directly from [1, Corollary 4.8].

Remark 2.18. Let R be a commutative Noetherian ring. Then every proper ideal of R is an n-absorbing ideal, and thus a semi- n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R, for some positive integer n ([1, Theorem 5.3]). However, if there is a fixed positive integer n such that every proper ideal of R is a semi- n-absorbing ideal of R, then $\operatorname{dim}(R)=0$ by Theorem 2.15.

3. Principal Ideals

In this section, we determine when the powers of a principal prime ideal of an integral domain are (m, n)-closed. Specifically, let R be an integral domain, $I=p^{k} R$, where p is a prime element of R and k is a positive integer, and m and n be fixed positive integers with $1 \leq n<m$. We first determine $\mathcal{A}(m, n)=\left\{k \in \mathbb{N} \mid p^{k} R\right.$ is (m, n)-closed $\}$. Of course, $\mathcal{A}(m, n)=\mathbb{N}$ for $1 \leq m \leq n$. Later, we fix k, and then determine $\mathcal{R}\left(p^{k} R\right)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid p^{k} R\right.$ is (m, n)-closed $\}$. Note that these results are independent of the integral domain R and the prime p. Finally, these characterizations are extended to ideals of the form $p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers.

Theorem 3.1. Let R be an integral domain, m and n integers with $1 \leq n<m$, and $I=p^{k} R$, where p is a prime element of R and k is a positive integer. Then the following statements are equivalent.
(1) I is an (m, n)-closed ideal of R.
(2) $k=m a+r$, where a and r are integers such that $a \geq 0,1 \leq r \leq n, a(m \bmod n)+$ $r \leq n$, and if $a \neq 0$, then $m=n+c$ for an integer c with $1 \leq c \leq n-1$.
(3) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k \in\{1, \ldots, n\}$. If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k \in \bigcup_{h=1}^{n}\{m i+h \mid i \in \mathbb{Z}$ and $0 \leq i c \leq n-h\}$.

Proof. (1) \Rightarrow (2) Suppose that $I=p^{k} R$ is an (m, n)-closed ideal of R for integers m and n with $1 \leq n<m$. Then $k=m a+r$, where a and r are integers such that $a \geq 0$ and $0 \leq r \leq m-1$. Assume that $r=0$; so $a>0$. Thus $\left(p^{a}\right)^{m}=p^{k} \in I$, and hence $\left(p^{a}\right)^{n} \in I$ since I is (m, n)-closed, which is impossible since $n a<m a=k$. Thus $1 \leq r \leq m-1$. Let d be the smallest positive integer such that $\left(p^{d}\right)^{m} \in I$. Then $m(a+1)=k+m-r>k$ since $r<m$, and $m a<k$ since $r \neq 0$. So $d=a+1$ is the smallest positive integer such that $\left(p^{d}\right)^{m} \in I$. Then $\left(p^{a+1}\right)^{m} \in I$, and hence $\left(p^{a+1}\right)^{n} \in I$ since I is (m, n)-closed. Thus $n a+n=n(a+1) \geq k=m a+r$. Hence $n \geq a(m-n)+r$ with $a(m-n) \geq 0$; so $1 \leq r \leq n$. Since $n<m$, we have $m=b n+c$ for integers b and c with $b \geq 1$ and $0 \leq c \leq n-1$. Thus $n \geq a(b n+c-n)+r=a(b-1) n+a c+r$. Since $n \geq a(b-1) n+a c+r$ and $a c+r \geq 1$, we have $a(b-1)=0$, and hence $n \geq a c+r$. Thus $a(m \bmod n)+r \leq n$ since $c=m \bmod n$. Assume that $a \neq 0$. Then $b=1$ since $a(b-1)=0$. Hence $m=n+c$ with $1 \leq c \leq n-1$ since $n<m$.
$(2) \Rightarrow(1)$ Suppose that $k=m a+r$, where a and r are integers such that $a \geq 0$, $1 \leq r \leq n, a(m \bmod n)+r \leq n$, and if $a \neq 0$, then $m=n+c$ for an integer c with $1 \leq c \leq n-1$. Assume that $x^{m} \in I$ for $x \in R$. We consider two cases. Case I: Assume that $a=0$. Then $k=r$, and hence $1 \leq k \leq n$. Then $p \mid x$, and thus $p^{k} \mid x^{k}$. Hence $p^{k} \mid x^{n}$ since $n \geq k$, and thus $x^{n} \in I$. Case II: Assume that $a \neq 0$. We show that $p^{k} \mid x^{n}$, and hence $x^{n} \in I$. Then $p \mid x$ and $p^{k} \mid x^{m}$ since $x^{m} \in I$. If $p^{k} \mid x$, then $x^{n} \in I$. So assume that $p^{k} \nmid x$. Let i be the largest positive integer such that $p^{i} \mid x$. Thus $p^{m i} \mid x^{m}$ and $m i$ is the largest positive integer such that $p^{m i} \mid x^{m}$. Hence $m i \geq k$; so $0 \geq k-m i=(m a+r)-m i=m(a-i)+r$. Since $1 \leq r \leq n$, we have $i>a$. Thus $i=a+b$ for an integer $b \geq 1$. Then $k=m a+r$ and $m=n+c$ give $k / n=(m a+r) / n=((n+c) a+r) / n=(n a+c a+r) / n=a+(c a+r) / n \leq a+1$ since $a c+r=a(m \bmod n)+r \leq n$. Since $b \geq 1$, we have $i=a+b \geq a+1 \geq k / n$, and hence $n i \geq k$. Thus $p^{n i} \mid x^{n}$ since $p^{i} \mid x$, and hence $p^{k} \mid x^{n}$ since $n i \geq k$. So $x^{n} \in I$. Thus I is (m, n)-closed.
$(2) \Leftrightarrow(3)$ Note that (3) is just an explicit form of (2).
Theorem 3.2. Let R be an integral domain, n a positive integer, and $I=p^{k} R$, where p is a prime element of R and k is a positive integer. Then the following statements are equivalent.
(1) I is a semi-n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R.
(2) $k=(n+1) a+r$, where a and r are integers such that $a \geq 0,1 \leq r \leq n$, and $a+r \leq n$.
(3) $k \in \bigcup_{h=1}^{n}\{(n+1) i+h \mid i \in \mathbb{Z}$ and $0 \leq i \leq n-h\}$.

Moreover, $\mid\left\{k \in \mathbb{N} \mid p^{k} R\right.$ is $(n+1, n)$-closed $\} \mid=n(n+1) / 2$.
Proof. (1) $\Leftrightarrow(2)$ The proof is clear by Theorem 3.1 since an ideal I of R is a semi- n-absorbing ideal if and only if I is $(n+1, n)$-closed.
$(2) \Leftrightarrow(3)$ Note that (3) is just an explicit form of (2).
The "moreover" statement follows from (3).
Corollary 3.3. Let R be an integral domain and $I=p^{k} R$, where p is a prime element of R and k is a positive integer. Then I is a semi-2-absorbing ideal (i.e. $(3,2)$-closed ideal) of R if and only if $k \in\{1,2,4\}$.

We next extend these results to products of prime powers. We use the wellknown fact that if p_{1}, \ldots, p_{n} are nonassociate prime elements of an integral domain R, then $p_{1}^{k_{1}} R \cap \cdots \cap p_{n}^{k_{n}} R=p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} R$ for all positive integers k_{1}, \ldots, k_{n}. Note that $p_{1}^{k_{1}} \cdots p_{n}^{k_{n}} R$ is an m-absorbing ideal of R if and only if $m \geq k_{1}+\cdots+k_{n}$ ([1, Theorem 2.1(d)]).

Theorem 3.4. Let R be an integral domain, m and n integers with $1 \leq n<m$, and $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers. Then the following statements are equivalent.
(1) I is an (m, n)-closed ideal of R.
(2) $p_{j}^{k_{j}} R$ is an (m, n)-closed ideal of R for every $1 \leq j \leq i$.
(3) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k_{j} \in\{1, \ldots, n\}$ for every $1 \leq j \leq i$. If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k_{j} \in \bigcup_{h=1}^{n}\{m v+h \mid v \in \mathbb{Z}$ and $0 \leq v c \leq n-h\}$ for every $1 \leq j \leq i$.

Proof. (1) \Rightarrow (2) Let $I_{j}=p_{j}^{k_{j}} R$. Suppose that $x^{m} \in I_{j}$ for $x \in R$. Let $y=$ $x\left(p_{1}^{k_{1}} \cdots p_{i}^{k_{i}}\right) / p_{j}^{k_{j}} \in R$. Then $y^{m} \in I$, and hence $y^{n} \in I$ since I is (m, n)-closed. By construction, $y^{n} \in I$ if and only if $x^{n} \in I_{j}$. Thus I_{j} is an (m, n)-closed ideal of R for every $1 \leq j \leq i$.
$(2) \Rightarrow$ (1) This is clear by Corollary $2.4(1)$ since $p_{1}^{k_{1}} R \cap \cdots \cap p_{i}^{k_{i}} R=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$.
$(2) \Leftrightarrow(3)$ This is clear by Theorem 3.1.
Corollary 3.5. Let R be a principal ideal domain, I a proper ideal of R, and m and n integers with $1 \leq n<m$. Then the following statements are equivalent.
(1) I is an (m, n)-closed ideal of R.
(2) $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers, and one of the following two conditions holds.
(a) If $m=b n+c$ for integers b and c with $b \geq 2$ and $0 \leq c \leq n-1$, then $k_{j} \in\{1, \ldots, n\}$ for every $1 \leq j \leq i$.
(b) If $m=n+c$ for an integer c with $1 \leq c \leq n-1$, then $k_{j} \in \bigcup_{h=1}^{n}\{m v+h \mid v \in$ \mathbb{Z} and $0 \leq v c \leq n-h\}$ for every $1 \leq j \leq i$.

Corollary 3.6. Let R be an integral domain, $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers, and n a
positive integer. Then the following statements are equivalent.
(1) I is a semi-n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R.
(2) $k_{j} \in \bigcup_{h=1}^{n}\{(n+1) v+h \mid v \in \mathbb{Z}$ and $0 \leq v \leq n-h\}$ for every $1 \leq j \leq i$.

Corollary 3.7. Let R be a principal ideal domain, I a proper ideal of R, and n a positive integer. Then the following statements are equivalent.
(1) I is a semi-n-absorbing ideal (i.e. $(n+1, n)$-closed ideal) of R.
(2) $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers, and $k_{j} \in \bigcup_{h=1}^{n}\{(n+1) v+h \mid v \in \mathbb{Z}$ and $0 \leq v \leq$ $n-h\}$ for every $1 \leq j \leq i$.

The next theorem uses Theorem 3.1 to give an easier criterion to determine when $p^{k} R$ is (m, n)-closed.

Theorem 3.8. Let R be an integral domain, m and n integers with $1 \leq n<m$, and $I=p^{k} R$, where p is a prime element R and k is a positive integer. Then the following statements are equivalent.
(1) I is an (m, n)-closed ideal of R.
(2) Exactly one of the following statements holds.
(a) $1 \leq k \leq n$.
(b) There is a positive integer a such that $k=m a+r=n a+d$ for integers r and d with $1 \leq r, d \leq n-1$.
(c) There is a positive integer a such that $k=m a+r=n(a+1)$ for an integer r with $1 \leq r \leq n-1$.

Proof. (1) $\Rightarrow(2)$ Suppose that I is (m, n)-closed. Then by Theorem $3.1, k=$ $m a+r$, where a and r are integers such that $a \geq 0,1 \leq r \leq n, a(m \bmod n)+r \leq n$, and if $a \neq 0$, then $m=n+c$ for an integer c with $1 \leq c \leq n-1$. Thus if $a=0$, then $1 \leq k \leq n$. Hence assume that $a \neq 0$. Note that $m \bmod n=c$. Since $c \neq 0$ and $a c+r \leq n$, we conclude that $1 \leq r<n$. Since $k=m a+r$ and $m=n+c$, we have $k=(n+c) a+r=n a+a c+r$. Let $d=a c+r$. Then $d \leq n$. If $d<n$, then $k=m a+r=n a+d$, where $1 \leq r, d \leq n-1$. If $d=n$, then $k=m a+r=n(a+1)$, where $1 \leq r \leq n-1$.
$(2) \Rightarrow(1)$ First, suppose that $1 \leq k \leq n$. Then it is clear that I is an (m, n) closed ideal of R. Next, suppose that there is an integer $a \geq 1$ such that $k=$ $m a+r=n a+d$, where $1 \leq r, d \leq n-1$. Then $m=n+(d-r) / a$, and thus $m=n+c$ for an integer c with $1 \leq c \leq n-1$. Hence I is (m, n)-closed by Theorem 3.1. Finally, suppose that there is an integer $a \geq 1$ such that $k=m a+r=n(a+1)$, where $1 \leq r \leq n-1$. Then $m=n+(n-r) / a=n+c$ for an integer c with $1 \leq c \leq n-1$, and thus I is (m, n)-closed by Theorem 3.1.

We next calculate $\mathcal{R}\left(p^{k} R\right)=\left\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid p^{k} R\right.$ is (m, n)-closed $\}$ for a fixed positive integer k. The following lemma will be needed.

Lemma 3.9. Let a, d, m, n, r, and w be positive integers such that $1 \leq r<m$, $1 \leq w<n<m$, and $1 \leq d \leq a$.
(1) If $m a+r=n a+w$, then $1 \leq r<w<n$ and $1 \leq a<n$.
(2) If $m a+r=n(a+1)$, then $1 \leq r<n$ and $1 \leq a<n$.
(3) If $m a+r=n(a+1)+d$, then either $m=n+1$ or $1 \leq a<n$.

Proof. (1) Suppose that $m a+r=n a+w$. Then $w-r=a(m-n)>0$ and $1 \leq w<$ n. Thus $1 \leq r<w<n$, and hence $0<w-r<n$. Thus $a=(w-r) /(m-n)<n$ since $0<w-r<n$ and $m-n \geq 1$.
(2) Suppose that $m a+r=n(a+1)$. Then $n-r=a(m-n)>0$. Thus $1 \leq r<n$, and $a=(n-r) /(m-n)<n$ since $0<n-r<n$ and $m-n \geq 1$.
(3) Suppose that $m a+r=n(a+1)+d$ and $a \geq n$. Then $0<m-n=$ $a(m-n) / a=(n+d-r) / a=n / a+d / a-r / a<2$ since $1<n \leq a, 1 \leq d \leq a$, and $r>0$. Thus $m-n=1$; so $m=n+1$.

For fixed positive integers m and k, we next determine the smallest positive integer n such that $I=p^{k} R$ is (m, n)-closed. Note that $n \leq m$ since every proper ideal is (m, m)-closed and that I is $\left(m, n^{\prime}\right)$-closed for all positive integers $n^{\prime} \geq n$. So this determines $\mathcal{R}\left(p^{k} R\right)$. Also, if $m>1$, then $n=1$ if and only if $k=1$, i.e. if and only if I is a prime ideal of R. As usual, $\lfloor x\rfloor$ is the greatest integer, or floor, function.

Theorem 3.10. Let R be an integral domain and $I=p^{k} R$, where p is a prime element of R and k is a positive integer. Let m be a positive integer and n be the smallest positive integer such that I is (m, n)-closed.
(1) If $m \geq k$, then $n=k$.
(2) Let $m<k$ and write $k=m a+r$, where a is a positive integer and $0 \leq r<m$.
(a) If $r=0$, then $n=m$.
(b) If $r \neq 0$ and $a \geq m$, then $n=m$.
(c) If $r \neq 0, a<m$, and $(a+1) \mid k$, then $n=k /(a+1)$.
(d) If $r \neq 0, a<m$, and $(a+1) \nmid k$, then $n=\lfloor k /(a+1)\rfloor+1$.

Proof. (1) If $m \geq k$, then $p^{m} \in I$ implies $p^{n} \in I$; so $n \geq k$. Clearly, I is (m, k) closed; so $n=k$ is the smallest positive integer such that I is (m, n)-closed when $m \geq k$.
(2) We may assume that $m>1$, and $n \leq m$ by the above comments.
(a) Suppose that $r=0$. Then I is not $(m, m-1)$-closed since $\left(p^{a}\right)^{m}=p^{k} \in I$ and $\left(p^{a}\right)^{m-1}=p^{m a-a}=p^{k-a} \notin I$. Thus $n=m$ since I is (m, m)-closed.
(b) Suppose that $r \neq 0$ and $a \geq m$. If $n \neq m$, then $n<m<k$. Thus either $k=m a+r=n a+d$ or $k=m a+r=n(a+1)$, where $1 \leq r, d<n$, by Theorem 3.8. Hence $a<n<m$ by Lemma 3.9(1)(2), a contradiction. Thus $n=m$.
(c) Suppose that $r \neq 0, a<m$, and $(a+1) \mid k$. Let $i=k /(a+1)$. Then $k=m a+r=i(a+1)$ with $1 \leq i<m$; so $1 \leq r<i$ by Lemma 3.9(2). By Theorem 3.8, I is an (m, i)-closed ideal and it is clear that i is the smallest such positive integer. Thus $n=i=k /(a+1)$.
(d) Suppose that $r \neq 0, a<m$, and $(a+1) \nmid k$. Let $i=\lfloor k /(a+1)\rfloor$. Then $k=m a+r=i(a+1)+d$, where $1 \leq d \leq a$ and $1 \leq i<m$. Thus either $m=i+1$ or $1 \leq d \leq a<i$ by Lemma 3.9(3). First, suppose that $m=i+1$. Since $(a+1) \nmid k, k \neq i(a+1)$, and thus I is not (m, i)-closed by Theorem 3.8. Hence $n=m=i+1=\lfloor k /(a+1)\rfloor+1$ is the smallest positive integer such that I is (m, n)-closed. Next, suppose that $1 \leq d \leq a<i$ and $m \neq i+1$; so $i+1<m$. Since $k=i(a+1)+d$, we have $k=(i+1) a+i+d-a$. Let $j=i+d-a \in \mathbb{Z}$. Then $1 \leq j \leq i$ since $1 \leq d \leq a<i$. Thus $\lfloor k /(i+1)\rfloor=a$. Since $k=m a+r=(i+1) a+j$ with $1 \leq j<i+1<m$, we have $1 \leq r<j \leq i$ by Lemma 3.9(1). Hence I is $(m, i+1)$-closed by Theorem 3.8. Since $(a+1) \nmid k$, we have $k \neq i(a+1)$, and thus I is not (m, i)-closed by Theorem 3.8. Hence $n=i+1=\lfloor k /(a+1)\rfloor+1$ is the smallest positive integer such that I is (m, n)-closed.

For fixed positive integers n and k, we next determine the largest positive integer $m($ or $\infty)$ such that $I=p^{k} R$ is (m, n)-closed. (If I is (m, n)-closed for every positive integer m, we will say that I is (∞, n)-closed.) Of course, m can also be found using the previous theorem. Clearly, $m \geq n$ since every proper ideal is (n, n)-closed, and I is $\left(m^{\prime}, n\right)$-closed for every positive integer $m^{\prime} \leq m$.

Theorem 3.11. Let R be an integral domain, n a positive integer, and $I=p^{k} R$, where p is a prime element of R and k is a positive integer.
(1) If $n \geq k$, then I is (m, n)-closed for every positive integer m.
(2) Let $n<k$ and write $k=n a+r$, where a is a positive integer and $0 \leq r<n$. Let m be the largest positive integer such that I is (m, n)-closed.
(a) If $a>n$, then $m=n$.
(b) If $a=n$ and $r=0$, then $m=n+1$.
(c) If $a=n$ and $r \neq 0$, then $m=n$.
(d) If $a<n, r=0$, and $(a-1) \mid k$, then $m=k /(a-1)-1$.
(e) If $a<n, r=0$, and $(a-1) \nmid k$, then $m=\lfloor k /(a-1)\rfloor$.
(f) If $a<n, r \neq 0$, and $a \mid k$, then $m=k / a-1$.
(g) If $a<n, r \neq 0$, and $a \nmid k$, then $m=\lfloor k / a\rfloor$.

Proof. (1) Let $x^{m} \in I$ for $x \in R$ and m a positive integer. Then $p \mid x^{m}$; so $p \mid x$ since p is prime. Thus $p^{n} \mid x^{n}$; so $x^{n} \in I$ since $n \geq k$. Hence I is (m, n)-closed.
(2) By the above comments, $m \geq n$. Suppose that I is (m, n)-closed and $m>n$. If $r=0$, then $k=m(a-1)+w=n a$, where $1 \leq w<n$ and $a-1<n$ by Theorem 3.8 and Lemma 3.9(2). If $r \neq 0$, then $k=m a+d=n a+r$, where $1 \leq d<r<n$ and $a<n$ by Theorem 3.8 and Lemma 3.9(1).
(a) Suppose that $a>n$. If $m \neq n$, then $m>n$; so either $a-1<n$ or $a<n$ by the above comments. In either case, $a \leq n$, a contradiction. Thus $m=n$.
(b) Suppose that $a=n$ and $r=0$; so $k=n^{2}$ and $n \geq 2$ since $n<k$. Note that $\left(p^{\alpha}\right)^{n+1} \in I \Rightarrow \alpha(n+1) \geq k=n^{2} \Rightarrow \alpha \geq n \Rightarrow \alpha n \geq n^{2}=k \Rightarrow\left(p^{\alpha}\right)^{n} \in I$; so I is $(n+1, n)$-closed. However, I is not $(n+2, n)$-closed since $\left(p^{n-1}\right)^{n+2} \in I$ and $\left(p^{n-1}\right)^{n} \notin I$. Thus $m=n+1$.
(c) Suppose that $a=n$ and $r \neq 0$. If $m>n$, then $a<n$ by the above comments. This is a contradiction; so $m=n$.
(d) Suppose that $a<n, r=0$, and $(a-1) \mid k$ (note that $a \geq 2$ since $n a=k>n$). Let $f=k /(a-1)$; so $k=f(a-1)$ and $a<n<f$. Thus $k=f(a-1)=$ $(f-1+1)(a-1)=(f-1)(a-1)+a-1=n a$ with $a-1<n$. Hence I is $(f-1, n)$-closed by Theorem 3.8. Note that I is not (f, n)-closed by Theorem 3.8. Hence $m=f-1=k /(a-1)-1$ is the largest positive integer such that I is (m, n)-closed.
(e) Suppose that $a<n, r=0$, and $(a-1) \nmid k$ (as in (d), $a \geq 2$). Let $f=$ $\lfloor k /(a-1)\rfloor$; so $k=f(a-1)+d$, where $1 \leq d<a-1$. Since $a<n<f$, we have $1 \leq d<a-1<f$. Since $k=f(a-1)+d=n a$ and $1 \leq d<f$, we have $d<n$ by Lemma 3.9(2). Thus I is (f, n)-closed by Theorem 3.8. Note that by construction of f, if $k=i(a-1)+c$ for some $1 \leq c<a-1$, then $i \leq f$. Thus $m=f=\lfloor k /(a-1)\rfloor$ is the largest positive integer such that I is (m, n)-closed.
(f) Suppose that $a<n, r \neq 0$, and $a \mid k$. Let $f=k / a$; so $k=f a$ and $f \geq n+1$. Then I is not (f, n)-closed by Theorem 3.8. First, assume that $f-1>n$. Thus $k=f a=(f-1+1) a=(f-1) a+a$. Since $a<n<f-1$ and $k=(f-1) a+a=$ $n a+r$, we conclude that I is $(f-1, n)$-closed by Theorem 3.8. Hence, in this case, $m=f-1=k / a-1$ is the largest positive integer such that I is (m, n)-closed. Next, assume that $f-1=n$. Then clearly $m=n=k / a-1$ is again the largest positive integer such that I is (m, n)-closed.
(g) Suppose that $a<n, r \neq 0$, and $a \nmid k$. Let $f=\lfloor k / a\rfloor$; so $k=f a+d$, where $1 \leq d<a$. Since $a<n<f$, we have $1 \leq d<a<f$. Since $k=f a+d=n a+r$ and $1 \leq d<f$, we have $d<n$ by Lemma 3.9(1). Thus I is (f, n)-closed by Theorem 3.8. Note that by construction of f, if $k=i a+c$ for some $1 \leq c<a$, then $i \leq f$. Thus $m=f=\lfloor k / a\rfloor$ is the largest positive integer such that I is (m, n)-closed.

The previous two theorems easily extend to products of principal prime ideals. In particular, we can calculate $\mathcal{R}(I)=\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid I$ is (m, n)-closed $\}$ for every proper ideal I in a principal ideal domain or every proper principal ideal I in a unique factorization domain.

Theorem 3.12. Let R be an integral domain and $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$, where p_{1}, \ldots, p_{i} are nonassociate prime elements of R and k_{1}, \ldots, k_{i} are positive integers.
(1) Let m be a positive integer. If n_{j} is the smallest positive integer such that $p_{j}^{k_{j}} R$ is (m, n_{j})-closed for $1 \leq j \leq i$, then $n=\max \left\{n_{1}, \ldots, n_{i}\right\}$ is the smallest positive integer such that I is (m, n)-closed.
(2) Let n be a positive integer. If m_{j} is the largest positive integer (or ∞) such that $p_{j}^{k_{j}} R$ is $\left(m_{j}, n\right)$-closed for $1 \leq j \leq i$, then $m=\min \left\{m_{1}, \ldots, m_{i}\right\}$ is the largest positive integer (or ∞) such that I is (m, n)-closed.

Proof. This follows since I is (m, n)-closed if and only if every $p_{j}^{k_{j}} R$ is (m, n)-closed by Theorem 3.4.

4. General Results

Let I be a proper ideal of a commutative ring R. We define $\mathcal{R}(I)=\{(m, n) \in$ $\mathbb{N} \times \mathbb{N} \mid I$ is (m, n)-closed $\}$. Thus $\{(m, n) \in \mathbb{N} \times \mathbb{N} \mid 1 \leq m \leq n\} \subseteq \mathcal{R}(I) \subseteq \mathbb{N} \times \mathbb{N}$ and $\mathcal{R}(I)=\mathbb{N} \times \mathbb{N}$ if and only if $\sqrt{I}=I$. We start with some elementary properties of $\mathcal{R}(I)$. If we define $\mathcal{R}(R)=\mathbb{N} \times \mathbb{N}$, then the results in this section hold for all ideals of R.

Theorem 4.1. Let R be a commutative ring, I and J proper ideals of R, and m, n and k positive integers.
(1) $(m, n) \in \mathcal{R}(I)$ for all positive integers m and n with $m \leq n$.
(2) If $(m, n) \in \mathcal{R}(I)$, then $\left(m^{\prime}, n^{\prime}\right) \in \mathcal{R}(I)$ for all positive integers m^{\prime} and n^{\prime} with $1 \leq m^{\prime} \leq m$ and $n^{\prime} \geq n$.
(3) If $(m, n) \in \mathcal{R}(I)$, then $(k m, k n) \in \mathcal{R}(I)$.
(4) If $(m, n),(n, k) \in \mathcal{R}(I)$, then $(m, k) \in \mathcal{R}(I)$.
(5) If $(m, n),(m+1, n+1) \in \mathcal{R}(I)$ for $m \neq n$, then $(m+1, n) \in \mathcal{R}(I)$.
(6) If $(n, 2),(n+1,2) \in \mathcal{R}(I)$ for an integer $n \geq 3$, then $(n+2,2) \in \mathcal{R}(I)$, and thus $(m, 2) \in \mathcal{R}(I)$ for every positive integer m.
(7) If $(m, n) \in \mathcal{R}(I)$ for positive integers m and n with $n \leq m / 2$, then $(m+1, n) \in$ $\mathcal{R}(I)$, and thus $(k, n) \in \mathcal{R}(I)$ for every positive integer k.
(8) $(m, n) \in \mathcal{R}(I)$ for every positive integer m if and only if $(2 n, n) \in \mathcal{R}(I)$.
(9) $\mathcal{R}(I \times J)=\mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J)$.

Proof. (1)-(4) all follow easily from the definitions.
(5) If $m<n$, then $(m+1, n) \in \mathcal{R}(I)$ by (1). For $m>n$, suppose that $x^{m+1} \in I$ for $x \in R$. Then $x^{n+1} \in I$ since I is $(m+1, n+1)$-closed. Thus $x^{m} \in I$ since $m \geq n+1$, and hence $x^{n} \in I$ since I is (m, n)-closed. Thus I is $(m+1, n)$-closed.
(6) Suppose that $x^{n+2} \in I$ for $x \in R$. Then $\left(x^{2}\right)^{n}=x^{2 n} \in I$ since $2 n \geq n+2$ because $n \geq 2$. Hence $x^{4}=\left(x^{2}\right)^{2} \in I$ since I is $(n, 2)$-closed. But then $x^{n+1} \in I$ since $n \geq 3$. Thus $x^{2} \in I$ since I is $(n+1,2)$-closed. Hence I is $(n+2,2)$-closed. Similarly, $(k, 2) \in \mathcal{R}(I)$ for every integer $k \geq n+3$. So by (2), I is $(k, 2)$-closed for every positive integer k.
(7) Let $x^{m+1} \in I$ for $x \in R$. Then $\left(x^{2}\right)^{m}=x^{2 m} \in I$, and hence $x^{2 n}=\left(x^{2}\right)^{n} \in I$ since I is (m, n)-closed. Thus $x^{m} \in I$ since $2 n \leq m$, and hence $x^{n} \in I$ since I is (m, n)-closed. Thus I is $(m+1, n)$-closed. Similarly, $(k, n) \in \mathcal{R}(I)$ for every integer $k \geq n$, and hence $(k, n) \in \mathcal{R}(I)$ for every positive integer k by (2).
(8) This follows directly from (7).
(9) Clearly $I \times J$ is (m, n)-closed if and only if I and J are both (m, n)-closed. Thus $\mathcal{R}(I \times J)=\mathcal{R}(I) \cap \mathcal{R}(J)$. That $\mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J)$ follows from Corollary $2.4(1)$.

Remark 4.2. (a) The $m \neq n$ hypothesis is needed in Theorem 4.1(5) since $(n, n) \in$ $\mathcal{R}(I)$ for every positive integer n.
(b) The $n \geq 3$ hypothesis is needed in Theorem 4.1(6). For $n=1$, we have $(1,2),(2,2) \in \mathcal{R}(I)$ for every proper ideal I of R, but, in general, $(3,2) \notin \mathcal{R}(I)$. For $n=2$, we have $(2,2),(3,2) \in \mathcal{R}(I)$ does not imply $(4,2) \in \mathcal{R}(I)$. For example, let $R=\mathbb{Z}$ and $I=16 \mathbb{Z}$. Then $(2,2),(3,2) \in \mathcal{R}(I)$, but $(4,2) \notin \mathcal{R}(I)$.
(c) The inclusion in Theorem 4.1(9) may be strict. For example, let $R=\mathbb{Z}, I=8 \mathbb{Z}$, and $J=16 \mathbb{Z}$. Then $(3,2) \in \mathcal{R}(J)=\mathcal{R}(I \cap J)$. However, $(3,2) \notin \mathcal{R}(I)$; so $\mathcal{R}(I) \cap \mathcal{R}(J) \subsetneq \mathcal{R}(I \cap J)$.
(d) More generally, $\mathcal{R}(I \times J)=\mathcal{R}(I) \cap \mathcal{R}(J)$ for all ideals I and J of commutative rings R and S, respectively.

Let I be a proper ideal of a commutative ring R and m and n positive integers. We define $f_{I}(m)=\min \{n \mid I$ is $(m, n)-$ closed $\} \in\{1, \ldots, m\}$ and $g_{I}(n)=\sup \{m \mid I$ is $(m, n)-$ closed $\} \in\{n, n+1, \ldots\} \cup\{\infty\}$; so $f_{I}: \mathbb{N} \rightarrow \mathbb{N}$ and $g_{I}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$. The columns (respectively, rows) of $\mathcal{R}(I)$ determine f_{I} (respectively, g_{I}). Thus either function f_{I} or g_{I} is determined by the other, and either function determines $\mathcal{R}(I)$ by Theorem 4.1(2). It is sometimes useful to view f_{I} (respectively, g_{I}) as an \mathbb{N}-valued (respectively, $\mathbb{N} \cup\{\infty\}$-valued) non-decreasing sequence $f_{I}=\left(f_{I}(m)\right)$ (respectively, $\left(g_{I}=\left(g_{I}(n)\right)\right)$. Note that $f_{I}=(1,1,1, \ldots)$ if and only if $g_{I}=(\infty, \infty, \infty, \ldots)$, if and only if $\sqrt{I}=I$. If we define $\mathcal{R}(R)=\mathbb{N} \times \mathbb{N}$, then $f_{R}=(1,1,1, \ldots)$ and $g_{R}=(\infty, \infty, \infty, \ldots)$. Also, f_{I} is eventually constant if and only if g_{I} is eventually constant, if and only if g_{I} is eventually ∞. We next give some elementary properties of the two functions f_{I} and g_{I}.

Theorem 4.3. Let R be a commutative ring, I a proper ideal of R, and m and n positive integers. Let $f_{I}(m)=\min \{n \mid I$ is (m, n)-closed $\}$ and $g_{I}(n)=\sup \{m \mid I$ is (m, n)-closed $\}$.
(1) $1 \leq f_{I}(m) \leq m$.
(2) $f_{I}(m) \leq f_{I}(m+1)$.
(3) If $f_{I}(m)<m$, then either $f_{I}(m+1)=f_{I}(m)$ or $f_{I}(m+1) \geq f_{I}(m)+2$.
(4) $n \leq g_{I}(n) \leq \infty$.
(5) $g_{I}(n) \leq g_{I}(n+1)$.
(6) If $g_{I}(n)>n$, then either $g_{I}(n+1)=g_{I}(n)$ or $g_{I}(n+1) \geq g_{I}(n)+2$.

Proof. (1) This is clear since $(n, n) \in \mathcal{R}(I)$ for every positive integer n by Theorem 4.1(1).
(2) This is clear by Theorem 4.1(2).
(3) Suppose that $f_{I}(m+1)=f_{I}(m)+1$. Let $f_{I}(m)=n$; so $m>n$ and $f_{I}(m+1)=n+1$. Then $(m, n),(m+1, n+1) \in \mathcal{R}(I)$ and $m>n$; so $(m+1, n) \in \mathcal{R}(I)$ by Theorem $4.1(5)$. Thus $f_{I}(m+1) \leq n$, a contradiction.
(4) This is also clear by Theorem 4.1(1).
(5) This is also clear by Theorem 4.1(2).
(6) The proof is similar to that of (3).

For $f, g: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$, we define $f \leq g$ if and only if $f(n) \leq g(n)$ for every $n \in \mathbb{N}$. Thus $(f \vee g)(n)=\max \{f(n), g(n)\}$ and $(f \wedge g)(n)=\min \{f(n), g(n)\}$ for every $n \in \mathbb{N}$.

Theorem 4.4. Let R be a commutative ring and I and J proper ideals of R. Let $f_{I}(m)=\min \{n \mid I$ is (m, n)-closed $\}$ and $g_{I}(n)=\sup \{m \mid I$ is (m, n)-closed $\}$. Then the following statements are equivalent.
(1) $\mathcal{R}(I) \subseteq \mathcal{R}(J)$.
(2) $f_{J} \leq f_{I}$, i.e. $f_{J}(m) \leq f_{I}(m)$ for every positive integer m.
(3) $g_{I} \leq g_{J}$, i.e. $g_{I}(n) \leq g_{J}(n)$ for every positive integer n.

Proof. It is clear that $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$.

The next theorem relates f_{I}, f_{J} (respectively, g_{I}, g_{J}) and $f_{I \cap J}$ (respectively, $\left.g_{I \cap J}\right)$.

Theorem 4.5. Let R be a commutative ring and I and J proper ideals of R. Let $f_{I}(m)=\min \{n \mid I$ is (m, n)-closed $\}$ and $g_{I}(n)=\sup \{m \mid I$ is (m, n)-closed $\}$.
(1) $f_{I \cap J} \leq f_{I} \vee f_{J}$.
(2) $g_{I} \wedge g_{J} \leq g_{I \cap J}$.
(3) The following statements are equivalent.
(a) $f_{I \cap J}=f_{I} \vee f_{J}$
(b) $g_{I \cap J}=g_{I} \wedge g_{J}$.
(c) $\mathcal{R}(I \cap J)=\mathcal{R}(I) \cap \mathcal{R}(J)$.

Proof. (1) Let $m \in \mathbb{N}, n_{1}=f_{I}(m), n_{2}=f_{J}(m)$, and $n=\max \left\{n_{1}, n_{2}\right\}$. Then $(m, n) \in \mathcal{R}(I) \cap \mathcal{R}(J) \subseteq \mathcal{R}(I \cap J)$ by Theorem 4.1(2)(9). Thus $f_{I \cap J}(m) \leq n=$ $\left(f_{I} \vee f_{J}\right)(m)$.
(2) The proof is similar to that of (1).
(3) $(a) \Rightarrow(c)$ Suppose that $f_{I \cap J}=f_{I} \vee f_{J}$. Then $f_{I}, f_{J} \leq f_{I \cap J}$; so $\mathcal{R}(I \cap J) \subseteq$ $\mathcal{R}(I) \cap \mathcal{R}(J)$ by Theorem 4.4. Thus $\mathcal{R}(I \cap J)=\mathcal{R}(I) \cap \mathcal{R}(J)$ by Theorem 4.1(9).
$(c) \Rightarrow(a)$ Suppose that $\mathcal{R}(I \cap J)=\mathcal{R}(I) \cap \mathcal{R}(J)$. Then $f_{I}, f_{J} \leq f_{I \cap J}$ by Theorem 4.4; so $f_{I} \vee f_{J} \leq f_{I \cap J}$. Thus $f_{I \cap J}=f_{I} \vee f_{J}$ since $f_{I \cap J} \leq f_{I} \vee f_{J}$ by (1).
$(b) \Leftrightarrow(c)$ The proof is similar to that of $(a) \Leftrightarrow(c)$.

The next result gives a case where $\mathcal{R}(I \cap J)=\mathcal{R}(I) \cap \mathcal{R}(J)$; its "moreover" statement generalizes $(1) \Leftrightarrow(2)$ of Theorem 3.4. Recall that two nonunits x and y in an integral domain R are coprime if $x R \cap y R=x y R$.

Theorem 4.6. Let R be an integral domain and $x, y \in R$ coprime elements. Then $\mathcal{R}(x y R)=\mathcal{R}(x R \cap y R)=\mathcal{R}(x R) \cap \mathcal{R}(y R)$. Moreover, $f_{x y R}=f_{x R} \vee f_{y R}$ and $g_{x y R}=g_{x R} \wedge g_{y R}$.

Proof. By Theorem 4.1(9), we need only to show that $\mathcal{R}(x R \cap y R) \subseteq \mathcal{R}(x R) \cap$ $\mathcal{R}(y R)$. We first show that $\mathcal{R}(x R \cap y R) \subseteq \mathcal{R}(x R)$. Let $(m, n) \in \mathcal{R}(x R \cap y R)$, and suppose that $a^{m} \in x R$ for $a \in R$. Then (ay) ${ }^{m} \in x R \cap y R=x y R$, and thus $(a y)^{n} \in$ $x y R \subseteq x R$ since $x y R=x R \cap y R$ is (m, n)-closed. Hence $(a y)^{n} \in x R \cap y^{n} R=x y^{n} R$ (this follows since x and y are coprime); so $a^{n} \in x R$. Thus $x R$ is (m, n)-closed; so $(m, n) \in \mathcal{R}(x R)$. Similarly, $(m, n) \in \mathcal{R}(y R) ;$ so $\mathcal{R}(x R \cap y R) \subseteq \mathcal{R}(x R) \cap \mathcal{R}(y R)$. Hence $\mathcal{R}(x y R)=\mathcal{R}(x R \cap y R)=\mathcal{R}(x R) \cap \mathcal{R}(y R)$.

The functions f_{I} and g_{I} may be strictly increasing (see Example 4.8(d)). However, if R is a commutative Noetherian ring, then f_{I} and g_{I} are eventually constant (i.e. g_{I} is eventually ∞) for every proper ideal I of R (cf. Example 2.2(c)).

Theorem 4.7. Let R be a commutative ring, n a positive integer, and I an n-absorbing ideal of R. Then $f_{I}(m) \leq n$ for every positive integer m. Thus f_{I} and g_{I} are eventually constant. In particular, if R is Noetherian, then f_{I} and g_{I} are eventually constant for every proper ideal I of R.

Proof. This follows directly from Theorem 2.1(4). The "in particular" statement holds since every proper ideal of a commutative Noetherian ring is an n-absorbing ideal for some positive integer n by [1, Theorem 5.3].

Let R be an integral domain and $I=p^{k} R$, where p is a prime element of R and k is a positive integer. Then Theorem 3.10 computes f_{I} and Theorem 3.11 computes g_{I}; the general case for $I=p_{1}^{k_{1}} \cdots p_{i}^{k_{i}} R$ is given by Theorem 3.12.

We end this section by computing the f_{I} and g_{I} functions for several examples.
Example 4.8. (a) Let R be an integral domain and $I=p^{30} R$ for p a prime element of R. By Theorem 3.10, one may easily calculate that $f_{I}(m)=m$ for $1 \leq m \leq 6$, $f_{I}(7)=6, f_{I}(8)=f_{I}(9)=8, f_{I}(m)=10$ for $10 \leq m \leq 14, f_{I}(m)=15$ for $15 \leq m \leq 29$, and $f_{I}(m)=30$ for $m \geq 30$. Using Theorem 3.11 (or the f_{I} function), one may easily calculate that $g_{I}(n)=n$ for $1 \leq n \leq 5, g_{I}(6)=$ $g_{I}(7)=7, g_{I}(8)=g_{I}(9)=9, g_{I}(n)=14$ for $10 \leq n \leq 14, g_{I}(n)=29$ for $15 \leq n \leq 29$, and $g_{I}(n)=\infty$ for $n \geq 30$.
(b) Let $R=\mathbb{Z}$ and $I=1260000 \mathbb{Z}=2^{5} 3^{2} 5^{4} 7 \mathbb{Z}$. Then $I=I_{1} \cap I_{2} \cap I_{3} \cap I_{4}$, where $I_{1}=2^{5} \mathbb{Z}, I_{2}=3^{2} \mathbb{Z}, I_{3}=5^{4} \mathbb{Z}$, and $I_{4}=7 \mathbb{Z}$. Let $f_{i}=f_{I_{i}}$ and $g_{i}=g_{I_{i}}$. Then $f_{1}=(1,2,3,3,5,5,5, \ldots), f_{2}=(1,2,2,2, \ldots), f_{3}=(1,2,2,4,4,4, \ldots)$,
$f_{4}=(1,1,1, \ldots)$ and $g_{1}=(1,2,4,4, \infty, \infty, \infty, \ldots), g_{2}=(1, \infty, \infty, \infty, \ldots)$, $g_{3}=(1,3,3, \infty, \infty, \infty, \ldots), g_{4}=(\infty, \infty, \infty, \ldots)$ by Theorems 3.10 and 3.11, respectively. Thus $f_{I}=(1,2,3,4,5,5,5, \ldots)$ and $g_{I}=(1,2,3,4, \infty, \infty, \infty, \ldots)$ by Theorem 3.12.
(c) Let n be a positive integer, p_{n} be the nth positive prime integer, $R=\mathbb{Z}$, and $I_{n}=2^{1} 3^{2} \cdots p_{n}^{n} \mathbb{Z}$. Then $f_{I_{1}}=(1,1,1, \ldots), g_{I_{1}}=(\infty, \infty, \infty, \ldots), f_{I_{n}}=$ $(1,2, \ldots, n-1, n, n, n, \ldots)$, and $g_{I_{n}}=(1,2, \ldots, n-1, \infty, \infty, \infty, \ldots)$ for $n \geq 2$ by Theorems 3.10-3.12.
(d) Let $R=\mathbb{Q}\left[\left\{X_{n}\right\}_{n \in \mathbb{N}}\right]$ and $I=\left(\left\{X_{n}^{n}\right\}_{n \in \mathbb{N}}\right)$ as in Example 2.2(b). Then $f_{I}(m)=$ $g_{I}(m)=m$ for every positive integer m since I is (m, n)-closed if and only if $1 \leq m \leq n$. Thus $f_{I}=g_{I}=(1,2,3, \ldots, n-1, n, n+1, \ldots)$.

The final example shows that for P a prime ideal (with $P^{4} \subsetneq P^{3}$) and p a prime element of an integral domain R, the ideals $I=p^{4} R$ and $J=P^{4}$ may give distinct functions f_{I}, f_{J} and g_{I}, g_{J}.

Example 4.9. (a) Let R be an integral domain and $I=p^{4} R$, where p is a prime element of R. One may easily compute that $f_{I}(1)=1, f_{I}(2)=f_{I}(3)=2$, and $f_{I}(m)=4$ for $m \geq 4$. Thus $g_{I}(1)=1, g_{I}(2)=g_{I}(3)=3$, and $g_{I}(n)=\infty$ for $n \geq 4$; so $f_{I}=(1,2,2,4,4,4, \ldots)$ and $g_{I}=(1,3,3, \infty, \infty, \infty, \ldots)$.
(b) Let $R=\mathbb{Z}[X]+\sqrt[3]{2} X \mathbb{Z}[\sqrt[3]{2}][X]$. Then $P=(2, X, \sqrt[3]{2} X)$ is a prime ideal of R and $P^{4} \subsetneq P^{3}$. Note that $J=P^{4}$ is not $(3,2)$-closed since $(\sqrt[3]{2} X)^{3}=2 X^{3} \in J$ and $(\sqrt[3]{2} X)^{2} \notin J$. Also, $2^{4} \in J$ and $2^{3} \notin J$; so J is not (4,3)-closed. Clearly, J is $(m, 4)$-closed for every positive integer m. Thus $f_{J}(m)=m$ for $1 \leq m \leq 3$ and $f_{J}(m)=4$ for $m \geq 4$, and hence $g_{J}(n)=n$ for $1 \leq n \leq 3$ and $g_{J}(n)=\infty$ for $n \geq 4$; so $f_{J}=(1,2,3,4,4,4, \ldots)$ and $g_{J}=(1,2,3, \infty, \infty, \infty, \ldots)$. Thus $f_{I}<f_{J}$ and $g_{J}<g_{I}$, where f_{I} and g_{I} are from (a).

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
[2] D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq. 19(Spec 1) (2012) 1017-1040.
[3] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008) 686-696.
[4] D. F. Anderson and S. T. Chapman, How far is an element from being prime? J. Algebra Appl. 9 (2010) 779-789.
[5] D. F. Anderson and S. T. Chapman, On bounding measures of primeness in integral domains, Int. J. Algebra Comput. 22 (2012), Article ID: 1250040, 15pp.
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
[7] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean. Math. Soc. 51 (2014) 1163-1173.
[8] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J. 52 (2012) 91-97.

Page Proof

[9] A. Y. Darani and E. R. Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86 (2013) 83-91.
[10] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011) 577-584.
[11] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 (2012) 1268-1279.
[12] R. Gilmer, Multiplicative Ideal Theory, Queens Papers in Pure and Applied Mathematics, Vol. 90 (Queens University, Kingston, 1992).
[13] J. Huckaba, Rings with Zero-Divisors (Marcel Dekker, New York/Basil, 1988).
[14] I. Kaplansky, Commutative Rings, rev. edn. (University of Chicago Press, Chicago, 1974).
[15] K. N. Kyun and L. Yang, On right quasi-duo rings which are π-regular, Bull. Korean Math. Soc. 37 (2000) 217-227.
[16] S. Payrovi and S. Babaei, On the 2-absorbing ideals, Int. Math. Forum 7 (2012) 265-271.

