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Let R be a commutative ring with 1 �= 0, and let I be a proper ideal of R. Recall that20

I is an n-absorbing ideal if whenever x1 · · ·xn+1 ∈ I for x1, . . . , xn+1 ∈ R, then there21

are n of the xi’s whose product is in I. We define I to be a semi-n-absorbing ideal if22

xn+1 ∈ I for x ∈ R implies xn ∈ I. More generally, for positive integers m and n, we23

define I to be an (m, n)-closed ideal if xm ∈ I for x ∈ R implies xn ∈ I. A number of24

examples and results on (m, n)-closed ideals are discussed in this paper.25
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1. Introduction28

Let R be a commutative ring with 1 �= 0, I a proper ideal of R, and n a positive29

integer. As in [1], I is called an n-absorbing ideal of R if whenever x1 · · ·xn+1 ∈ I30

for x1, . . . , xn+1 ∈ R, then there are n of the xi’s whose product is in I. Thus a31

1-absorbing ideal is just a prime ideal. In this paper, we define I to be a semi-32

n-absorbing ideal of R if xn+1 ∈ I for x ∈ R implies xn ∈ I. Clearly, an n-absorbing33

ideal is also a semi-n-absorbing ideal, and a semi-1-absorbing ideal is just a rad-34

ical (semiprime) ideal. Hence n-absorbing (respectively, semi-n-absorbing) ideals35

generalize prime (respectively, radical) ideals. More generally, for positive inte-36

gers m and n, we define I to be an (m, n)-closed ideal of R if xm ∈ I for x∈R37
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implies xn ∈ I. Thus I is a semi-n-absorbing ideal if and only if I is an (n + 1, n)-1

closed ideal, and I is a radical ideal if and only if I is a (2, 1)-closed ideal. In fact,2

an n-absorbing ideal is (m, n)-closed for every positive integer m. Clearly, a proper3

ideal is (m, n)-closed for 1 ≤ m ≤ n; so we often assume that 1 ≤ n < m.4

The concept of 2-absorbing ideals was introduced in [6] and then extended to5

n-absorbing ideals in [1]. Several related concepts, such as 2-absorbing primary6

ideals, have been studied in [7–10, 16]. Other generalizations of prime ideals are7

investigated in [3–5, 11].8

In Sec. 2, we give the basic properties of semi-n-absorbing ideals and (m, n)-9

closed ideals. We also determine when every proper ideal of R is (m, n)-closed for10

integers 1 ≤ n < m. In Sec. 3, we specialize to the case of principal ideals in integral11

domains. For an integral domain R, we determine R(I) = {(m, n) ∈ N × N | I is12

(m, n)-closed} for I = pk1
1 · · · pki

i R, where p1, . . . , pi are nonassociate prime elements13

of R and k1, . . . , ki are positive integers. In Sec. 4, we continue the study of (m, n)-14

closed ideals and give several examples to illustrate earlier results. For a proper ideal15

I of R, we investigate the two functions fI and gI defined by fI(m) = min{n | I is16

(m, n)-closed} and gI(n) = sup{m | I is (m, n)-closed}.17

We assume throughout that all rings are commutative with 1 �= 0 and that18

f(1) = 1 for all ring homomorphisms f : R → T . For such a ring R, dim(R)19

denotes the Krull dimension of R,
√

I denotes the radical of an ideal I of R, and20

nil(R), Z(R), and U(R) denote the set of nilpotent elements, zero-divisors, and21

units of R, respectively; and R is reduced if nil(R) = {0}. Recall that R is von22

Neumann regular if for every x ∈ R, there is a y ∈ R such that x2y = x, and that23

R is π-regular if for every x ∈ R, there are y ∈ R and a positive integer n such that24

x2ny = xn. Moreover, R is π-regular (respectively, von Neumann regular) if and25

only if dim(R) = 0 (respectively, R is reduced and dim(R) = 0) ([13, Theorem 3.1,26

p. 10]). Thus R is π-regular if and only if R/nil(R) is von Neumann regular. As27

usual, N, Z, Zn, and Q will denote the positive integers, integers, integers modulo28

n, and rational numbers, respectively. For any undefined concepts or terminology,29

see [12, 13], or [14].30

2. Properties of (m, n)-Closed Ideals31

We start with the following observations and examples. Recall that if M1, . . . , Mn32

are maximal ideals of R, then M1 · · ·Mn is an n-absorbing ideal of R ([1,33

Theorem 2.9]); an analogous result holds for semi-n-absorbing ideals.34

Theorem 2.1. Let R be a commutative ring.35

(1) A radical ideal of R is (m, n)-closed for all positive integers m and n.36

(2) An n-absorbing ideal of R is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed37

ideal) of R for every positive integer n.38

(3) An (m, n)-closed ideal of R is (m′, n′)-closed for all positive integers m′ ≤ m39

and n′ ≥ n.40
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(4) An n-absorbing ideal of R is (m, n)-closed for every positive integer m.1

(5) Let P1, . . . , Pk be radical ideals of R. Then P1 · · ·Pk is (m, n)-closed for all inte-2

gers m ≥ 1 and n ≥ min{m, k}. In particular, P1 · · ·Pk is a semi-k-absorbing3

ideal (i.e. (k + 1, k)-closed ideal) of R.4

Proof. (1)–(3) follow directly from the definitions.5

(4) Let I be an n-absorbing ideal of R for n a positive integer. Suppose that6

xm ∈ I for x ∈ R and m > n an integer. Then xn ∈ R by [1, Theorem 2.1(a)]; so I7

is (m, n)-closed for m > n. Clearly, I is (m, n)-closed for every integer 1 ≤ m ≤ n;8

so I is (m, n)-closed for every positive integer m.9

(5) Let xm ∈ P1 · · ·Pk for x ∈ R. Then xm ∈ Pi for every 1 ≤ i ≤ k, and thus10

x ∈ Pi since Pi is a radical ideal of R. Hence xk ∈ P1 · · ·Pk; so xn ∈ P1 · · ·Pk for11

n ≥ min{m, k}.12

The following examples show that for every integer n ≥ 2, there is a semi-n-13

absorbing ideal (i.e. (n + 1, n)-closed ideal) that is neither a radical ideal nor an14

n-absorbing ideal, and that there is an ideal that is not a semi-n-absorbing ideal15

(i.e. (n + 1, n)-closed ideal) for any positive integer n.16

Example 2.2. (a) Let R = Z, n ≥ 2 an integer, and I = 2 · 3nZ. Then I is a17

semi-n-absorbing ideal (i.e. (n+1, n)-closed ideal) of R by Theorem 2.1(5) (let18

P1 = 6Z and P2 = · · · = Pn = 3Z). In fact, I is a semi-m-absorbing ideal for19

every integer m ≥ n. However, (2 · 3n−1)2 ∈ I and 2 · 3n−1 �∈ I; so I is not a20

radical ideal of R. Moreover, 2 · 3n ∈ I, 3n /∈ I, and 2 · 3n−1 /∈ I; so I is not an21

n-absorbing ideal of R (but, I is an (n + 1)-absorbing ideal of R). Note that22

for n = 1, I = 6Z is a semi-1-absorbing ideal (i.e. radical ideal) of R, but not23

a 1-absorbing ideal (i.e. prime ideal) of R.24

(b) Let R = Q[{Xn}n∈N] and I = ({Xn
n}n∈N). Then Xn+1

n+1 ∈ I and Xn
n+1 �∈ I for25

every positive integer n; so I is not a semi-n-absorbing ideal (i.e. (n + 1, n)-26

closed ideal) for any positive integer n. Thus I is (m, n)-closed if and only if27

1 ≤ m ≤ n.28

(c) Let R be a commutative Noetherian ring. Then every proper ideal of R is29

an n-absorbing ideal of R, and hence a semi-n-absorbing ideal of R, for some30

positive integer n ([1, Theorem 5.3]). Thus, by Theorem 2.1(4), for every proper31

ideal I of R, there is a positive integer n such that I is (m, n)-closed for every32

positive integer m. Note that the ring in (b) is not Noetherian.33

(d) Clearly, an n-absorbing ideal of R is also an (n + 1)-absorbing ideal of R.34

However, this need not be true for semi-n-absorbing ideals. For example, it is35

easily seen that I = 16Z is a semi-2-absorbing ideal (i.e. (3, 2)-closed ideal) of36

Z, but not a semi-3-absorbing ideal (i.e. (4, 3)-closed ideal) of Z.37

(e) Let R be a valuation domain. Then a radical ideal of R is also a prime ideal of38

R ([12, Theorem 17.1]), i.e. a semi-1-absorbing ideal of R is a 1-absorbing ideal39

of R. However, a semi-n-absorbing ideal of R need not be an n-absorbing ideal40
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of R for n ≥ 2. For example, let R = Z(2) and I = 16Z(2). Then R is a DVR,1

and it is easily verified that I is a semi-2-absorbing ideal (i.e. (3, 2)-closed ideal)2

of R, but not a 2-absorbing ideal of R.3

In general, a product of (m, n)-closed ideals need not be (m, n)-closed (e.g. a4

product of radical ideals need not be a radical ideal). The next result generalizes5

Theorem 2.1(5) (also, see Theorem 4.1(9)).6

Theorem 2.3. Let R be a commutative ring, m1, . . . , mk, n1, . . . , nk positive7

integers, and I1, . . . , Ik be ideals of R such that Ii is (mi, ni)-closed for 1 ≤ i ≤ k.8

(1) I1 ∩ · · · ∩ Ik is (m, n)-closed for all positive integers m ≤ min{m1, . . . , mk} and9

n ≥ min{m, max{n1, . . . , nk}}.10

(2) I1 · · · Ik is (m, n)-closed for all positive integers m ≤ min{m1, . . . , mk} and11

n ≥ min{m, n1 + · · · + nk}.12

Proof. (1) Let xm ∈ I1 ∩ · · · ∩ Ik for x ∈ R, m ≤ min{m1, . . . , mk}, and 1 ≤13

i ≤ k. Then xm ∈ Ii, and thus xmi ∈ Ii; so xni ∈ Ii since Ii is (mi, ni)-closed.14

Hence xn ∈ I1 ∩ · · · ∩ Ik for n ≥ max{n1, . . . , nk}. Thus xn ∈ I1 ∩ · · · ∩ Ik for15

n ≥ min{m, max{n1, . . . , nk}}.16

(2) Let xm ∈ I1 · · · Ik for x ∈ R, m ≤ min{m1, . . . , mk}, and 1 ≤ i ≤ k.17

Then xm ∈ Ii, and thus xmi ∈ Ii; so xni ∈ Ii since Ii is (mi, ni)-closed. Hence18

xn1+···+nk ∈ I1 · · · Ik; so xn ∈ I1 · · · Ik for n ≥ n1 + · · ·+ nk. Thus xn ∈ I1 · · · Ik for19

n ≥ min{m, n1 + · · · + nk}.20

Recall that two ideals I and J of a commutative ring R are comaximal if I +J =21

R, and in this case, IJ = I ∩ J .22

Corollary 2.4. Let R be a commutative ring, m and n positive integers, and23

I1, . . . , Ik be (m, n)-closed ideals (respectively, semi-n-absorbing ideals) of R.24

(1) I1∩· · ·∩Ik is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal) of R.25

(2) If I1, . . . , Ik are pairwise comaximal, then I1 · · · Ik is an (m, n)-closed ideal26

(respectively, semi-n-absorbing ideal) of R.27

Let m and n be positive integers. In [1], we defined a proper ideal I of a com-28

mutative ring R to be a strongly n-absorbing ideal of R if whenever I1 · · · In+1 ⊆ I29

for ideals I1, . . . , In+1 of R, then there are n of the Ii’s whose product is in I.30

Clearly, a strongly n-absorbing ideal is also an n-absorbing ideal, and in [1], we31

gave several cases where the two concepts are equivalent and conjectured that they32

are always equivalent. Analogously, we define a proper ideal I of R to be a strongly33

semi-n-absorbing ideal of R if Jn ⊆ I whenever Jn+1 ⊆ I for an ideal J of R, and34

more generally, we say that a proper ideal I of R is a strongly (m, n)-closed ideal35

of R if Jn ⊆ I whenever Jm ⊆ I for an ideal J of R. Clearly, every proper ideal36

of R is strongly (m, n)-closed for 1 ≤ m ≤ n, a strongly (m, n)-closed ideal of R is37
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an (m, n)-closed ideal of R, and an (m, 1)-closed ideal of R is also strongly (m, 1)-1

closed. However, an (m, n)-closed ideal of R need not be a strongly (m, n)-closed2

ideal of R; we have the following example.3

Example 2.5. Let R = Z[X, Y ], I = (X2, 2XY, Y 2), and J =
√

I = (X, Y ).4

Suppose that am ∈ I for a ∈ R and m a positive integer. Then a ∈ √
I, and thus5

a = bX+cY for some b, c ∈ R. Hence a2 = (bX+cY )2 = b2X2+2bcXY +c2Y 2 ∈ I,6

and thus I is an (m, 2)-closed ideal of R for every positive integer m. It is easily7

checked that Jm ⊆ I for every integer m ≥ 3. However, J2 �⊆ I since XY �∈ I; so I8

is not a strongly (m, 2)-closed ideal of R for any integer m ≥ 3.9

In view of Example 2.5, we have the following result.10

Theorem 2.6. Let R be a commutative ring, m a positive integer, I an (m, 2)-11

closed ideal of R, and J an ideal of R.12

(1) If Jm ⊆ I, then 2J2 ⊆ I.13

(2) Suppose that 2 ∈ U(R). If Jm ⊆ I, then J2 ⊆ I (i.e. I is a strongly (m, 2)-closed14

ideal of R).15

Proof. (1) Let x, y ∈ J . Then xm, ym, (x + y)m ∈ I since Jm ⊆ I, and thus16

x2, y2, (x+ y)2 ∈ I since I is (m, 2)-closed. Hence 2xy = (x+ y)2−x2 − y2 ∈ I, and17

thus 2J2 ⊆ I.18

(2) This follows directly from (1).19

Let I be an (m, n)-closed ideal of a commutative ring R. By Example 2.5, it is20

possible that xn ∈ I for every x ∈ J =
√

I, but Jn �⊆ I. It is also possible that21

xn ∈ I for every x ∈ J =
√

I, but Jm �⊆ I. Finally, it is possible to have xm �∈ I for22

some x ∈ √
I. We have the following examples.23

Example 2.7. (a) Let R = Z2[X, Y, Z], I = (X2, Y 2, Z2), and J =
√

I =24

(X, Y, Z). Let a ∈ J . Then a = bX + cY + dZ for some b, c, d ∈ R. Thus25

a2 = b2X2 + c2Y 2 + d2Z2 ∈ I; so I is a (3, 2)-closed ideal of R. However,26

J3 �⊆ I since XY Z �∈ I.27

(b) Let R = Z and I = 16Z. Then I is a (3, 2)-closed ideal of R. However, 2 ∈28 √
I = 2Z, but 23 = 8 �∈ I.29

The next theorem is the (m, n)-closed analog for well-known localization results30

about prime, radical, and n-absorbing ideals ([1, Theorem 4.1]).31

Theorem 2.8. Let R be a commutative ring, m and n positive integers, I an32

(m, n)-closed ideal of R, and S a multiplicatively closed subset of R such that I ∩33

S = ∅.34

(1) IS is an (m, n)-closed ideal of RS. In particular, if I is a semi-n-absorbing ideal35

of R, then IS is a semi-n-absorbing ideal of RS.36
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(2) If n = 2, 2 ∈ S, and Jm ⊆ IS for an ideal J of RS , then J2 ⊆ IS (i.e. IS is a1

strongly (m, 2)-closed ideal of RS).2

Proof. (1) Let xm ∈ IS for x ∈ RS . Then x = r/s for some r ∈ R and s ∈ S, and3

thus xm = rm/sm = i/t for some i ∈ I and t ∈ S. Hence rmtz = smiz ∈ I for some4

z ∈ S, and thus (rtz)m ∈ I. Hence (rtz)n ∈ I since I is (m, n)-closed, and thus5

xn = rn/sn = rntnzn/sntnzn ∈ IS . Hence IS is an (m, n)-closed ideal of RS . The6

“in particular” statement is clear.7

(2) Suppose that Jm ⊆ IS for an ideal J of RS . Then 2 ∈ U(RS) since 2 ∈ S,8

and thus J2 ⊆ IS by Theorem 2.6(2).9

Corollary 2.9. Let R be a commutative ring, I a proper ideal of R, and m and10

n positive integers. Then I is an (m, n)-closed ideal of R if and only if IP is an11

(m, n)-closed ideal of RP for every prime (or maximal) ideal of R containing I. In12

particular, I is a semi-n-absorbing ideal if and only if I is locally a semi-n-absorbing13

ideal.14

Proof. (⇒) This follows directly from Theorem 2.8(1).15

(⇐) Let xm ∈ I for x ∈ R, J = {r ∈ R | rxn ∈ I} (an ideal of R), and P be16

a prime ideal of R with I ⊆ P . Then (x/1)m ∈ IP ; so (x/1)n ∈ IP since IP is17

(m, n)-closed. Thus sxn ∈ I for some s ∈ R\P ; so J � P . Clearly, J � Q for every18

prime ideal Q of R with I � Q. Hence J = R; so xn ∈ I. Thus I is (m, n)-closed.19

The “in particular” statement is clear.20

The next theorem and corollary extend well-known results about prime, radical,21

and n-absorbing ideals ([1, Theorem 4.2, Corollary 4.3]) to (m, n)-closed ideals; their22

proofs are left to the reader.23

Theorem 2.10. Let R and T be commutative rings, m and n positive integers,24

and f : R → T a homomorphism.25

(1) If J is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal ) of T, then26

f−1(J) is an (m, n)-closed ideal (respectively, semi-n-absorbing ideal ) of R.27

(2) If f is surjective and I is an (m, n)-closed ideal (respectively, semi-n-absorbing28

ideal ) of R containing kerf, then f(I) is an (m, n)-closed ideal (respectively,29

semi-n-absorbing ideal ) of T .30

Corollary 2.11. Let m and n be positive integers.31

(1) Let R ⊆ T be an extension of commutative rings. If J is an (m, n)-closed ideal32

(respectively, semi-n-absorbing ideal ) of T, then J ∩R is an (m, n)-closed ideal33

(respectively, semi-n-absorbing ideal ) of R.34

(2) Let I ⊆ J be proper ideals of a commutative ring R. Then J/I is an (m, n)-35

closed ideal (respectively, semi-n-absorbing ideal ) of R/I if and only if J is an36

(m, n)-closed ideal (respectively, semi-n-absorbing ideal ) of R.37
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Recall that an ideal of R × S has the form I × J for I an ideal of R and J an1

ideal of S. For a ring T , it will be convenient to define the improper ideal T to be2

an (∞, 1)-closed ideal of T ; then the following theorem holds for all ideals of R×S3

(also, see Theorem 4.1(9) and Remark 4.2(d)). The n-absorbing ideal analog of the4

next theorem was given in [1, Theorem 4.7]; its proof is also left to the reader.5

Theorem 2.12. Let R and S be commutative rings, I an (m1, n1)-closed ideal of6

R, and J an (m2, n2)-closed ideal of S. Then I×J is an (m, n)-closed ideal of R×S7

for all positive integers m ≤ min{m1, m2} and n ≥ max{n1, n2}.8

It is well-known that every proper ideal of a commutative ring R is a prime9

ideal if and only if R is a field (this is the very first exercise in [14]), and it is10

easily shown that every proper ideal of R is a radical ideal if and only if R is von11

Neumann regular. Our next goal is to determine when every proper ideal of R is12

(m, n)-closed. The following result is included for further reference.13

Theorem 2.13. Let R be a commutative ring and n a positive integer.14

(1) Every proper ideal of R is a prime ideal if and only if R is a field.15

(2) Every proper ideal of R is a radical ideal if and only if R is von Neumann16

regular.17

(3) If every proper ideal of R is an n-absorbing ideal, then dim(R) = 0 and R has18

at most n maximal ideals.19

Proof. (1) This result is well known ([14, Exercise 1, p. 7]).20

(2) First, suppose that every proper ideal of R is a radical ideal. Let x ∈ R be a21

nonunit. Then x2R is a radical ideal, and thus x ∈ x2R; so x = x2y for some y ∈ R.22

If x ∈ U(R), then x = x2x−1 with x−1 ∈ R. Hence R is von Neumann regular.23

Conversely, suppose that R is von Neumann regular. Let I be a proper ideal of24

R and x2 ∈ I for x ∈ R. Then x = x2y for some y ∈ R, and thus x = x2y ∈ I.25

Hence I is a radical ideal.26

(3) This is [1, Theorem 5.9].27

Theorem 2.14. Let R be a commutative ring and m and n integers with 1 ≤ n <28

m. Then the following statements are equivalent.29

(1) Every proper ideal of R is an (m, n)-closed ideal of R.30

(2) dim(R) = 0 and wn = 0 for every w ∈ nil(R).31

Proof. (1) ⇒ (2) Let w ∈ nil(R). Then wmR is an (m, n)-closed ideal of R; so wn ∈32

wmR since wm ∈ wmR. Thus wn = wmz for some z ∈ R. Hence wn(1−wm−nz) = 0,33

and thus wn = 0 since 1 − wm−nz ∈ U(R) because wm−nz ∈ nil(R) since m > n.34

Suppose, by way of contradiction, that dim(R) ≥ 1. Then there are prime ideals35

P � Q of R. Let x ∈ Q\P . As above, xn ∈ xmR; so xn = xmy for some y ∈ R.36

Thus xn(1 − xm−ny) = 0 ∈ P , and hence 1 − xm−ny ∈ P ⊆ Q since x ∈ Q\P . But37

then 1 ∈ Q since xm−ny ∈ Q, a contradiction. Thus dim(R) = 0.38

1750013-7
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(2) ⇒ (1) Let I be a proper ideal of R, and assume that xm ∈ I for x ∈ R.1

Then R is π-regular since dim(R) = 0, and thus x = eu + w for some idempotent2

e ∈ R, u ∈ U(R), and w ∈ nil(R) by [15, Theorem 13]. If n = 1, then R is3

reduced, and thus R is von Neumann regular since dim(R) = 0. In this case, every4

proper ideal of R is a radical ideal by Theorem 2.13(2), and hence I is (m, 1)-5

closed. Thus we may assume that n ≥ 2. Let k ≥ n; so wk = 0. Then xk =6

(eu + w)k = euk + keuk−1w + · · · + keuwk−1 = e(uk + kuk−1w + · · · + kuwk−1).7

Hence vk = uk + kuk−1w + · · · + kuwk−1 ∈ U(R) since u ∈ U(R), w ∈ nil(R), and8

k ≥ 2; and thus xk = evk. In particular, xm = eh ∈ I with h ∈ U(R) since m > n,9

and hence e = h−1xm ∈ I. Thus xk = evk ∈ I for every integer k ≥ n. Hence I is10

(m, n)-closed.11

In light of Theorem 2.14, and the fact that an (m, n)-closed ideal is also (m′, n)-12

closed for every positive integer m′ ≤ m, we have the following results.13

Theorem 2.15. Let R be a commutative ring and n a positive integer. Then the14

following statements are equivalent.15

(1) Every proper ideal of R is (m, n)-closed for every positive integer m.16

(2) There is an integer m > n such that every proper ideal of R is (m, n)-closed.17

(3) For every proper ideal I of R, there is an integer mI > n such that I is (mI , n)-18

closed.19

(4) Every proper ideal of R is a semi-n-absorbing ideal (i.e. (n +1, n)-closed ideal)20

of R.21

(5) dim(R) = 0 and wn = 0 for every w ∈ nil(R).22

Proof. Clearly, (1) ⇒ (2) ⇒ (3) ⇒ (4), and (4) ⇒ (5) follows from Theorem 2.14.23

Finally, (5) ⇒ (1) follows from Theorem 2.14 for m > n, and from the fact that24

every proper ideal is (m, n)-closed for 1 ≤ m ≤ n.25

Corollary 2.16. Let R be a reduced commutative ring. Then the following state-26

ments are equivalent.27

(1) Every proper ideal of R is a radical ideal.28

(2) Every proper ideal of R is (m, n)-closed for all positive integers m and n.29

(3) There is a positive integer n such that every proper ideal of R is (m, n)-closed30

for every integer m ≥ n.31

(4) There is a positive integer n such that every proper ideal I of R is (mI , n)-closed32

for some integer mI > n.33

(5) There is a positive integer n such that every proper ideal of R is a semi-n-34

absorbing ideal (i.e. (n + 1, n)-closed ideal) of R.35

(6) R is a von Neumann regular ring.36

Moreover, if R is an integral domain and any of the above conditions hold, then R37

is a field.38
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Proof. Clearly, (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5), and (5) ⇒ (6) by Theorem 2.141

since a reduced commutative ring R with dim(R) = 0 is von Neumann regular.2

Also, (6) ⇒ (1) by Theorem 2.13(2). The “moreover” statement holds since an3

integral domain is von Neumann regular if and only if it is a field.4

Corollary 2.17. Let R be a reduced commutative ring and n a positive integer.5

Then every proper ideal of R is an n-absorbing ideal of R if and only if R is6

isomorphic to the direct product of at most n fields.7

Proof. (⇒) R is von Neumann regular by Corollary 2.16 since an n-absorbing8

ideal is a semi-n-absorbing ideal, and R has at most n maximal ideals by Theo-9

rem 2.13(b). Thus R is isomorphic to the direct product of at most n fields by the10

Chinese Remainder Theorem.11

(⇐) This follows directly from [1, Corollary 4.8].12

Remark 2.18. Let R be a commutative Noetherian ring. Then every proper ideal13

of R is an n-absorbing ideal, and thus a semi-n-absorbing ideal (i.e. (n+1, n)-closed14

ideal) of R, for some positive integer n ([1, Theorem 5.3]). However, if there is a15

fixed positive integer n such that every proper ideal of R is a semi-n-absorbing ideal16

of R, then dim(R) = 0 by Theorem 2.15.17

3. Principal Ideals18

In this section, we determine when the powers of a principal prime ideal of an19

integral domain are (m, n)-closed. Specifically, let R be an integral domain, I = pkR,20

where p is a prime element of R and k is a positive integer, and m and n be fixed21

positive integers with 1 ≤ n < m. We first determine A(m, n) = {k ∈ N | pkR22

is (m, n)-closed}. Of course, A(m, n) = N for 1 ≤ m ≤ n. Later, we fix k, and23

then determine R(pkR) = {(m, n) ∈ N × N | pkR is (m, n)-closed}. Note that these24

results are independent of the integral domain R and the prime p. Finally, these25

characterizations are extended to ideals of the form pk1
1 · · · pki

i R, where p1, . . . , pi26

are nonassociate prime elements of R and k1, . . . , ki are positive integers.27

Theorem 3.1. Let R be an integral domain, m and n integers with 1 ≤ n < m,28

and I = pkR, where p is a prime element of R and k is a positive integer. Then29

the following statements are equivalent.30

(1) I is an (m, n)-closed ideal of R.31

(2) k = ma+r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, a(m mod n)+32

r ≤ n, and if a �= 0, then m = n + c for an integer c with 1 ≤ c ≤ n − 1.33

(3) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then34

k ∈ {1, . . . , n}. If m = n + c for an integer c with 1 ≤ c ≤ n − 1, then35

k ∈ ⋃n
h=1{mi + h | i ∈ Z and 0 ≤ ic ≤ n − h}.36
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Proof. (1) ⇒ (2) Suppose that I = pkR is an (m, n)-closed ideal of R for integers1

m and n with 1 ≤ n < m. Then k = ma + r, where a and r are integers such that2

a ≥ 0 and 0 ≤ r ≤ m − 1. Assume that r = 0; so a > 0. Thus (pa)m = pk ∈ I, and3

hence (pa)n ∈ I since I is (m, n)-closed, which is impossible since na < ma = k.4

Thus 1 ≤ r ≤ m − 1. Let d be the smallest positive integer such that (pd)m ∈ I.5

Then m(a + 1) = k + m− r > k since r < m, and ma < k since r �= 0. So d = a + 16

is the smallest positive integer such that (pd)m ∈ I. Then (pa+1)m ∈ I, and hence7

(pa+1)n ∈ I since I is (m, n)-closed. Thus na + n = n(a + 1) ≥ k = ma + r.8

Hence n ≥ a(m − n) + r with a(m − n) ≥ 0; so 1 ≤ r ≤ n. Since n < m, we9

have m = bn + c for integers b and c with b ≥ 1 and 0 ≤ c ≤ n − 1. Thus10

n ≥ a(bn + c − n) + r = a(b − 1)n + ac + r. Since n ≥ a(b − 1)n + ac + r and11

ac + r ≥ 1, we have a(b − 1) = 0, and hence n ≥ ac + r. Thus a(m mod n) + r ≤ n12

since c = m mod n. Assume that a �= 0. Then b = 1 since a(b − 1) = 0. Hence13

m = n + c with 1 ≤ c ≤ n − 1 since n < m.14

(2) ⇒ (1) Suppose that k = ma+ r, where a and r are integers such that a ≥ 0,15

1 ≤ r ≤ n, a(m mod n) + r ≤ n, and if a �= 0, then m = n + c for an integer c16

with 1 ≤ c ≤ n − 1. Assume that xm ∈ I for x ∈ R. We consider two cases. Case17

I: Assume that a = 0. Then k = r, and hence 1 ≤ k ≤ n. Then p |x, and thus18

pk |xk. Hence pk |xn since n ≥ k, and thus xn ∈ I. Case II: Assume that a �= 0.19

We show that pk |xn, and hence xn ∈ I. Then p |x and pk |xm since xm ∈ I. If20

pk |x, then xn ∈ I. So assume that pk � x. Let i be the largest positive integer such21

that pi |x. Thus pmi |xm and mi is the largest positive integer such that pmi |xm.22

Hence mi ≥ k; so 0 ≥ k −mi = (ma + r)−mi = m(a− i) + r. Since 1 ≤ r ≤ n, we23

have i > a. Thus i = a + b for an integer b ≥ 1. Then k = ma + r and m = n + c24

give k/n = (ma+r)/n = ((n+c)a+r)/n = (na+ca+r)/n = a+(ca+r)/n ≤ a+125

since ac + r = a(m mod n) + r ≤ n. Since b ≥ 1, we have i = a + b ≥ a + 1 ≥ k/n,26

and hence ni ≥ k. Thus pni |xn since pi |x, and hence pk |xn since ni ≥ k. So27

xn ∈ I. Thus I is (m, n)-closed.28

(2) ⇔ (3) Note that (3) is just an explicit form of (2).29

Theorem 3.2. Let R be an integral domain, n a positive integer, and I = pkR,30

where p is a prime element of R and k is a positive integer. Then the following31

statements are equivalent.32

(1) I is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed ideal) of R.33

(2) k = (n + 1)a + r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, and34

a + r ≤ n.35

(3) k ∈ ⋃n
h=1{(n + 1)i + h | i ∈ Z and 0 ≤ i ≤ n − h}.36

Moreover, |{k ∈ N | pkR is (n + 1, n)-closed}| = n(n + 1)/2.37

Proof. (1) ⇔ (2) The proof is clear by Theorem 3.1 since an ideal I of R is a38

semi-n-absorbing ideal if and only if I is (n + 1, n)-closed.39
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(2) ⇔ (3) Note that (3) is just an explicit form of (2).1

The “moreover” statement follows from (3).2

Corollary 3.3. Let R be an integral domain and I = pkR, where p is a prime3

element of R and k is a positive integer. Then I is a semi-2-absorbing ideal (i.e.4

(3, 2)-closed ideal ) of R if and only if k ∈ {1, 2, 4}.5

We next extend these results to products of prime powers. We use the well-6

known fact that if p1, . . . , pn are nonassociate prime elements of an integral domain7

R, then pk1
1 R ∩ · · · ∩ pkn

n R = pk1
1 · · · pkn

n R for all positive integers k1, . . . , kn. Note8

that pk1
1 · · · pkn

n R is an m-absorbing ideal of R if and only if m ≥ k1 + · · · + kn9

([1, Theorem 2.1(d)]).10

Theorem 3.4. Let R be an integral domain, m and n integers with 1 ≤ n < m,11

and I = pk1
1 · · · pki

i R, where p1, . . . , pi are nonassociate prime elements of R and12

k1, . . . , ki are positive integers. Then the following statements are equivalent.13

(1) I is an (m, n)-closed ideal of R.14

(2) p
kj

j R is an (m, n)-closed ideal of R for every 1 ≤ j ≤ i.15

(3) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then16

kj ∈ {1, . . . , n} for every 1 ≤ j ≤ i. If m = n + c for an integer c with17

1 ≤ c ≤ n − 1, then kj ∈ ⋃n
h=1{mv + h | v ∈ Z and 0 ≤ vc ≤ n − h} for every18

1 ≤ j ≤ i.19

Proof. (1) ⇒ (2) Let Ij = p
kj

j R. Suppose that xm ∈ Ij for x ∈ R. Let y =20

x(pk1
1 · · · pki

i )/p
kj

j ∈ R. Then ym ∈ I, and hence yn ∈ I since I is (m, n)-closed. By21

construction, yn ∈ I if and only if xn ∈ Ij . Thus Ij is an (m, n)-closed ideal of R22

for every 1 ≤ j ≤ i.23

(2) ⇒ (1) This is clear by Corollary 2.4(1) since pk1
1 R∩· · ·∩pki

i R = pk1
1 · · · pki

i R.24

(2) ⇔ (3) This is clear by Theorem 3.1.25

Corollary 3.5. Let R be a principal ideal domain, I a proper ideal of R, and m26

and n integers with 1 ≤ n < m. Then the following statements are equivalent.27

(1) I is an (m, n)-closed ideal of R.28

(2) I = pk1
1 · · · pki

i R, where p1, . . . , pi are nonassociate prime elements of R and29

k1, . . . , ki are positive integers, and one of the following two conditions holds.30

(a) If m = bn + c for integers b and c with b ≥ 2 and 0 ≤ c ≤ n − 1, then31

kj ∈ {1, . . . , n} for every 1 ≤ j ≤ i.32

(b) If m = n + c for an integer c with 1 ≤ c ≤ n−1, then kj ∈ ⋃n
h=1{mv+h | v ∈33

Z and 0 ≤ vc ≤ n − h} for every 1 ≤ j ≤ i.34

Corollary 3.6. Let R be an integral domain, I = pk1
1 · · · pki

i R, where p1, . . . , pi35

are nonassociate prime elements of R and k1, . . . , ki are positive integers, and n a36
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positive integer. Then the following statements are equivalent.1

(1) I is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed ideal ) of R.2

(2) kj ∈ ⋃n
h=1{(n + 1)v + h | v ∈ Z and 0 ≤ v ≤ n − h} for every 1 ≤ j ≤ i.3

Corollary 3.7. Let R be a principal ideal domain, I a proper ideal of R, and n a4

positive integer. Then the following statements are equivalent.5

(1) I is a semi-n-absorbing ideal (i.e. (n + 1, n)-closed ideal) of R.6

(2) I = pk1
1 · · · pki

i R, where p1, . . . , pi are nonassociate prime elements of R and7

k1, . . . , ki are positive integers, and kj ∈ ⋃n
h=1{(n+1)v+h | v ∈ Z and 0 ≤ v ≤8

n − h} for every 1 ≤ j ≤ i.9

The next theorem uses Theorem 3.1 to give an easier criterion to determine10

when pkR is (m, n)-closed.11

Theorem 3.8. Let R be an integral domain, m and n integers with 1 ≤ n < m,12

and I = pkR, where p is a prime element R and k is a positive integer. Then the13

following statements are equivalent.14

(1) I is an (m, n)-closed ideal of R.15

(2) Exactly one of the following statements holds.16

(a) 1 ≤ k ≤ n.17

(b) There is a positive integer a such that k = ma + r = na + d for integers r18

and d with 1 ≤ r, d ≤ n − 1.19

(c) There is a positive integer a such that k = ma+ r = n(a+1) for an integer20

r with 1 ≤ r ≤ n − 1.21

Proof. (1) ⇒ (2) Suppose that I is (m, n)-closed. Then by Theorem 3.1, k =22

ma+r, where a and r are integers such that a ≥ 0, 1 ≤ r ≤ n, a(m mod n)+r ≤ n,23

and if a �= 0, then m = n + c for an integer c with 1 ≤ c ≤ n − 1. Thus if a = 0,24

then 1 ≤ k ≤ n. Hence assume that a �= 0. Note that m mod n = c. Since c �= 025

and ac + r ≤ n, we conclude that 1 ≤ r < n. Since k = ma + r and m = n + c, we26

have k = (n + c)a + r = na + ac + r. Let d = ac + r. Then d ≤ n. If d < n, then27

k = ma + r = na + d, where 1 ≤ r, d ≤ n− 1. If d = n, then k = ma + r = n(a + 1),28

where 1 ≤ r ≤ n − 1.29

(2) ⇒ (1) First, suppose that 1 ≤ k ≤ n. Then it is clear that I is an (m, n)-30

closed ideal of R. Next, suppose that there is an integer a ≥ 1 such that k =31

ma + r = na+d, where 1 ≤ r, d ≤ n−1. Then m = n+(d−r)/a, and thus m = n+c32

for an integer c with 1 ≤ c ≤ n−1. Hence I is (m, n)-closed by Theorem 3.1. Finally,33

suppose that there is an integer a ≥ 1 such that k = ma + r = n(a + 1), where34

1 ≤ r ≤ n− 1. Then m = n + (n− r)/a = n + c for an integer c with 1 ≤ c ≤ n− 1,35

and thus I is (m, n)-closed by Theorem 3.1.36

We next calculate R(pkR) = {(m, n) ∈ N × N | pkR is (m, n)-closed} for a fixed37

positive integer k. The following lemma will be needed.38
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Lemma 3.9. Let a, d, m, n, r, and w be positive integers such that 1 ≤ r < m,1

1 ≤ w < n < m, and 1 ≤ d ≤ a.2

(1) If ma + r = na + w, then 1 ≤ r < w < n and 1 ≤ a < n.3

(2) If ma + r = n(a + 1), then 1 ≤ r < n and 1 ≤ a < n.4

(3) If ma + r = n(a + 1) + d, then either m = n + 1 or 1 ≤ a < n.5

Proof. (1) Suppose that ma+r = na+w. Then w−r = a(m−n) > 0 and 1 ≤ w <6

n. Thus 1 ≤ r < w < n, and hence 0 < w − r < n. Thus a = (w − r)/(m − n) < n7

since 0 < w − r < n and m − n ≥ 1.8

(2) Suppose that ma+r = n(a+1). Then n−r = a(m−n) > 0. Thus 1 ≤ r < n,9

and a = (n − r)/(m − n) < n since 0 < n − r < n and m − n ≥ 1.10

(3) Suppose that ma + r = n(a + 1) + d and a ≥ n. Then 0 < m − n =11

a(m−n)/a = (n + d− r)/a = n/a+ d/a− r/a < 2 since 1 < n ≤ a, 1 ≤ d ≤ a, and12

r > 0. Thus m − n = 1; so m = n + 1.13

For fixed positive integers m and k, we next determine the smallest positive14

integer n such that I = pkR is (m, n)-closed. Note that n ≤ m since every proper15

ideal is (m, m)-closed and that I is (m, n′)-closed for all positive integers n′ ≥ n.16

So this determines R(pkR). Also, if m > 1, then n = 1 if and only if k = 1, i.e. if17

and only if I is a prime ideal of R. As usual, �x� is the greatest integer, or floor,18

function.19

Theorem 3.10. Let R be an integral domain and I = pkR, where p is a prime20

element of R and k is a positive integer. Let m be a positive integer and n be the21

smallest positive integer such that I is (m, n)-closed.22

(1) If m ≥ k, then n = k.23

(2) Let m < k and write k = ma + r, where a is a positive integer and 0 ≤ r < m.24

(a) If r = 0, then n = m.25

(b) If r �= 0 and a ≥ m, then n = m.26

(c) If r �= 0, a < m, and (a + 1) | k, then n = k/(a + 1).27

(d) If r �= 0, a < m, and (a + 1) � k, then n = �k/(a + 1)� + 1.28

Proof. (1) If m ≥ k, then pm ∈ I implies pn ∈ I; so n ≥ k. Clearly, I is (m, k)-29

closed; so n = k is the smallest positive integer such that I is (m, n)-closed30

when m ≥ k.31

(2) We may assume that m > 1, and n ≤ m by the above comments.32

(a) Suppose that r = 0. Then I is not (m, m − 1)-closed since (pa)m = pk ∈ I33

and (pa)m−1 = pma−a = pk−a �∈ I. Thus n = m since I is (m, m)-closed.34

(b) Suppose that r �= 0 and a ≥ m. If n �= m, then n < m < k. Thus either35

k = ma + r = na + d or k = ma + r = n(a + 1), where 1 ≤ r, d < n, by36

Theorem 3.8. Hence a < n < m by Lemma 3.9(1)(2), a contradiction. Thus37

n = m.38
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(c) Suppose that r �= 0, a < m, and (a + 1) | k. Let i = k/(a + 1). Then1

k = ma + r = i(a + 1) with 1 ≤ i < m; so 1 ≤ r < i by Lemma 3.9(2). By2

Theorem 3.8, I is an (m, i)-closed ideal and it is clear that i is the smallest3

such positive integer. Thus n = i = k/(a + 1).4

(d) Suppose that r �= 0, a < m, and (a + 1) � k. Let i = �k/(a + 1)�. Then5

k = ma + r = i(a + 1) + d, where 1 ≤ d ≤ a and 1 ≤ i < m. Thus either6

m = i+1 or 1 ≤ d ≤ a < i by Lemma 3.9(3). First, suppose that m = i+1.7

Since (a+1) �k, k �= i(a+1), and thus I is not (m, i)-closed by Theorem 3.8.8

Hence n = m = i+1 = �k/(a+1)�+1 is the smallest positive integer such9

that I is (m, n)-closed. Next, suppose that 1 ≤ d ≤ a < i and m �= i + 1;10

so i + 1 < m. Since k = i(a + 1) + d, we have k = (i + 1)a + i + d − a.11

Let j = i + d − a ∈ Z. Then 1 ≤ j ≤ i since 1 ≤ d ≤ a < i. Thus12

�k/(i + 1)� = a. Since k = ma + r = (i + 1)a + j with 1 ≤ j < i + 1 < m,13

we have 1 ≤ r < j ≤ i by Lemma 3.9(1). Hence I is (m, i + 1)-closed by14

Theorem 3.8. Since (a + 1) �k, we have k �= i(a + 1), and thus I is not15

(m, i)-closed by Theorem 3.8. Hence n = i + 1 = �k/(a + 1)� + 1 is the16

smallest positive integer such that I is (m, n)-closed.17

For fixed positive integers n and k, we next determine the largest positive integer18

m (or ∞) such that I = pkR is (m, n)-closed. (If I is (m, n)-closed for every positive19

integer m, we will say that I is (∞, n)-closed.) Of course, m can also be found using20

the previous theorem. Clearly, m ≥ n since every proper ideal is (n, n)-closed, and21

I is (m′, n)-closed for every positive integer m′ ≤ m.22

Theorem 3.11. Let R be an integral domain, n a positive integer, and I = pkR,23

where p is a prime element of R and k is a positive integer.24

(1) If n ≥ k, then I is (m, n)-closed for every positive integer m.25

(2) Let n < k and write k = na + r, where a is a positive integer and 0 ≤ r < n.26

Let m be the largest positive integer such that I is (m, n)-closed.27

(a) If a > n, then m = n.28

(b) If a = n and r = 0, then m = n + 1.29

(c) If a = n and r �= 0, then m = n.30

(d) If a < n, r = 0, and (a − 1) | k, then m = k/(a − 1) − 1.31

(e) If a < n, r = 0, and (a − 1) � k, then m = �k/(a − 1)�.32

(f) If a < n, r �= 0, and a | k, then m = k/a − 1.33

(g) If a < n, r �= 0, and a � k, then m = �k/a�.34

Proof. (1) Let xm ∈ I for x ∈ R and m a positive integer. Then p |xm; so p |x35

since p is prime. Thus pn |xn; so xn ∈ I since n ≥ k. Hence I is (m, n)-closed.36

(2) By the above comments, m ≥ n. Suppose that I is (m, n)-closed and m > n.37

If r = 0, then k = m(a− 1)+ w = na, where 1 ≤ w < n and a− 1 < n by Theorem38

3.8 and Lemma 3.9(2). If r �= 0, then k = ma + d = na + r, where 1 ≤ d < r < n39

and a < n by Theorem 3.8 and Lemma 3.9(1).40
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(a) Suppose that a > n. If m �= n, then m > n; so either a − 1 < n or a < n by1

the above comments. In either case, a ≤ n, a contradiction. Thus m = n.2

(b) Suppose that a = n and r = 0; so k = n2 and n ≥ 2 since n < k. Note3

that (pα)n+1 ∈ I ⇒ α(n + 1) ≥ k = n2 ⇒ α ≥ n ⇒ αn ≥ n2 = k ⇒ (pα)n ∈ I;4

so I is (n+1, n)-closed. However, I is not (n+2, n)-closed since (pn−1)n+2 ∈ I and5

(pn−1)n �∈ I. Thus m = n + 1.6

(c) Suppose that a = n and r �= 0. If m > n, then a < n by the above comments.7

This is a contradiction; so m = n.8

(d) Suppose that a < n, r = 0, and (a−1)|k (note that a ≥ 2 since na = k > n).9

Let f = k/(a − 1); so k = f(a − 1) and a < n < f . Thus k = f(a − 1) =10

(f − 1 + 1)(a − 1) = (f − 1)(a − 1) + a − 1 = na with a − 1 < n. Hence I is11

(f − 1, n)-closed by Theorem 3.8. Note that I is not (f, n)-closed by Theorem 3.8.12

Hence m = f − 1 = k/(a − 1) − 1 is the largest positive integer such that I is13

(m, n)-closed.14

(e) Suppose that a < n, r = 0, and (a − 1) �k (as in (d), a ≥ 2). Let f =15

�k/(a − 1)�; so k = f(a − 1) + d, where 1 ≤ d < a − 1. Since a < n < f , we have16

1 ≤ d < a − 1 < f . Since k = f(a − 1) + d = na and 1 ≤ d < f , we have d < n by17

Lemma 3.9(2). Thus I is (f, n)-closed by Theorem 3.8. Note that by construction of18

f , if k = i(a− 1)+ c for some 1 ≤ c < a− 1, then i ≤ f . Thus m = f = �k/(a− 1)�19

is the largest positive integer such that I is (m, n)-closed.20

(f) Suppose that a < n, r �= 0, and a | k. Let f = k/a; so k = fa and f ≥ n + 1.21

Then I is not (f, n)-closed by Theorem 3.8. First, assume that f − 1 > n. Thus22

k = fa = (f − 1 + 1)a = (f − 1)a + a. Since a < n < f − 1 and k = (f − 1)a + a =23

na + r, we conclude that I is (f − 1, n)-closed by Theorem 3.8. Hence, in this case,24

m = f − 1 = k/a − 1 is the largest positive integer such that I is (m, n)-closed.25

Next, assume that f − 1 = n. Then clearly m = n = k/a − 1 is again the largest26

positive integer such that I is (m, n)-closed.27

(g) Suppose that a < n, r �= 0, and a �k. Let f = �k/a�; so k = fa + d, where28

1 ≤ d < a. Since a < n < f , we have 1 ≤ d < a < f . Since k = fa + d = na + r and29

1 ≤ d < f , we have d < n by Lemma 3.9(1). Thus I is (f, n)-closed by Theorem 3.8.30

Note that by construction of f , if k = ia + c for some 1 ≤ c < a, then i ≤ f . Thus31

m = f = �k/a� is the largest positive integer such that I is (m, n)-closed.32

The previous two theorems easily extend to products of principal prime ideals.33

In particular, we can calculate R(I) = {(m, n) ∈ N × N | I is (m, n)-closed} for34

every proper ideal I in a principal ideal domain or every proper principal ideal I35

in a unique factorization domain.36

Theorem 3.12. Let R be an integral domain and I = pk1
1 · · · pki

i R, where p1, . . . , pi37

are nonassociate prime elements of R and k1, . . . , ki are positive integers.38

(1) Let m be a positive integer. If nj is the smallest positive integer such that p
kj

j R is39

(m, nj)-closed for 1 ≤ j ≤ i, then n = max{n1, . . . , ni} is the smallest positive40

integer such that I is (m, n)-closed.41

1750013-15



Page Proof

January 27, 2016 18:13 WSPC/S0219-4988 171-JAA 1750013

D. F. Anderson & A. Badawi

(2) Let n be a positive integer. If mj is the largest positive integer (or ∞) such that1

p
kj

j R is (mj , n)-closed for 1 ≤ j ≤ i, then m = min{m1, . . . , mi} is the largest2

positive integer (or ∞) such that I is (m, n)-closed.3

Proof. This follows since I is (m, n)-closed if and only if every p
kj

j R is (m, n)-closed4

by Theorem 3.4.5

4. General Results6

Let I be a proper ideal of a commutative ring R. We define R(I) = {(m, n) ∈7

N×N | I is (m, n)-closed}. Thus {(m, n) ∈ N×N | 1 ≤ m ≤ n} ⊆ R(I) ⊆ N×N and8

R(I) = N × N if and only if
√

I = I. We start with some elementary properties of9

R(I). If we define R(R) = N×N, then the results in this section hold for all ideals10

of R.11

Theorem 4.1. Let R be a commutative ring, I and J proper ideals of R, and m, n12

and k positive integers.13

(1) (m, n) ∈ R(I) for all positive integers m and n with m ≤ n.14

(2) If (m, n) ∈ R(I), then (m′, n′) ∈ R(I) for all positive integers m′ and n′ with15

1 ≤ m′ ≤ m and n′ ≥ n.16

(3) If (m, n) ∈ R(I), then (km, kn) ∈ R(I).17

(4) If (m, n), (n, k) ∈ R(I), then (m, k) ∈ R(I).18

(5) If (m, n), (m + 1, n + 1) ∈ R(I) for m �= n, then (m + 1, n) ∈ R(I).19

(6) If (n, 2), (n + 1, 2) ∈ R(I) for an integer n ≥ 3, then (n + 2, 2) ∈ R(I), and20

thus (m, 2) ∈ R(I) for every positive integer m.21

(7) If (m, n) ∈ R(I) for positive integers m and n with n ≤ m/2, then (m+1, n) ∈22

R(I), and thus (k, n) ∈ R(I) for every positive integer k.23

(8) (m, n) ∈ R(I) for every positive integer m if and only if (2n, n) ∈ R(I).24

(9) R(I × J) = R(I) ∩R(J) ⊆ R(I ∩ J).25

Proof. (1)–(4) all follow easily from the definitions.26

(5) If m < n, then (m + 1, n) ∈ R(I) by (1). For m > n, suppose that xm+1 ∈ I27

for x ∈ R. Then xn+1 ∈ I since I is (m + 1, n + 1)-closed. Thus xm ∈ I since28

m ≥ n + 1, and hence xn ∈ I since I is (m, n)-closed. Thus I is (m + 1, n)-closed.29

(6) Suppose that xn+2 ∈ I for x ∈ R. Then (x2)n = x2n ∈ I since 2n ≥ n + 230

because n ≥ 2. Hence x4 = (x2)2 ∈ I since I is (n, 2)-closed. But then xn+1 ∈ I31

since n ≥ 3. Thus x2 ∈ I since I is (n + 1, 2)-closed. Hence I is (n + 2, 2)-closed.32

Similarly, (k, 2) ∈ R(I) for every integer k ≥ n + 3. So by (2), I is (k, 2)-closed for33

every positive integer k.34

(7) Let xm+1 ∈ I for x ∈ R. Then (x2)m = x2m ∈ I, and hence x2n = (x2)n ∈ I35

since I is (m, n)-closed. Thus xm ∈ I since 2n ≤ m, and hence xn ∈ I since I is36

(m, n)-closed. Thus I is (m + 1, n)-closed. Similarly, (k, n) ∈ R(I) for every integer37

k ≥ n, and hence (k, n) ∈ R(I) for every positive integer k by (2).38
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(8) This follows directly from (7).1

(9) Clearly I × J is (m, n)-closed if and only if I and J are both (m, n)-closed.2

Thus R(I × J) = R(I) ∩R(J). That R(I) ∩R(J) ⊆ R(I ∩ J) follows from Corol-3

lary 2.4(1).4

Remark 4.2. (a) The m �= n hypothesis is needed in Theorem 4.1(5) since (n, n) ∈5

R(I) for every positive integer n.6

(b) The n ≥ 3 hypothesis is needed in Theorem 4.1(6). For n = 1, we have7

(1, 2), (2, 2) ∈ R(I) for every proper ideal I of R, but, in general, (3, 2) �∈ R(I).8

For n = 2,we have (2, 2), (3, 2) ∈ R(I) does not imply (4, 2) ∈ R(I). For exam-9

ple, let R = Z and I = 16Z. Then (2, 2), (3, 2) ∈ R(I), but (4, 2) �∈ R(I).10

(c) The inclusion in Theorem 4.1(9) may be strict. For example, let R = Z, I = 8Z,11

and J = 16Z. Then (3, 2) ∈ R(J) = R(I ∩ J). However, (3, 2) �∈ R(I); so12

R(I) ∩R(J) � R(I ∩ J).13

(d) More generally, R(I × J) = R(I)∩R(J) for all ideals I and J of commutative14

rings R and S, respectively.15

Let I be a proper ideal of a commutative ring R and m and n positive integers.16

We define fI(m) = min{n | I is (m, n)−closed} ∈ {1, . . . , m} and gI(n) = sup{m | I17

is (m, n)−closed} ∈ {n, n+1, . . .}∪{∞}; so fI : N → N and gI : N → N∪{∞}. The18

columns (respectively, rows) of R(I) determine fI (respectively, gI). Thus either19

function fI or gI is determined by the other, and either function determines R(I) by20

Theorem 4.1(2). It is sometimes useful to view fI (respectively, gI) as an N-valued21

(respectively, N∪{∞}-valued) non-decreasing sequence fI = (fI(m)) (respectively,22

(gI = (gI(n))). Note that fI = (1, 1, 1, . . .) if and only if gI = (∞,∞,∞, . . .),23

if and only if
√

I = I. If we define R(R) = N × N, then fR = (1, 1, 1, . . .) and24

gR = (∞,∞,∞, . . .). Also, fI is eventually constant if and only if gI is eventually25

constant, if and only if gI is eventually ∞. We next give some elementary properties26

of the two functions fI and gI .27

Theorem 4.3. Let R be a commutative ring, I a proper ideal of R, and m and n28

positive integers. Let fI(m) = min{n | I is (m, n)-closed} and gI(n) = sup{m | I is29

(m, n)-closed}.30

(1) 1 ≤ fI(m) ≤ m.31

(2) fI(m) ≤ fI(m + 1).32

(3) If fI(m) < m, then either fI(m + 1) = fI(m) or fI(m + 1) ≥ fI(m) + 2.33

(4) n ≤ gI(n) ≤ ∞.34

(5) gI(n) ≤ gI(n + 1).35

(6) If gI(n) > n, then either gI(n + 1) = gI(n) or gI(n + 1) ≥ gI(n) + 2.36

Proof. (1) This is clear since (n, n) ∈ R(I) for every positive integer n by Theo-37

rem 4.1(1).38

(2) This is clear by Theorem 4.1(2).39
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(3) Suppose that fI(m + 1) = fI(m) + 1. Let fI(m) = n; so m > n and1

fI(m+1) = n+1. Then (m, n), (m+1, n+1) ∈ R(I) and m > n; so (m+1, n) ∈ R(I)2

by Theorem 4.1(5). Thus fI(m + 1) ≤ n, a contradiction.3

(4) This is also clear by Theorem 4.1(1).4

(5) This is also clear by Theorem 4.1(2).5

(6) The proof is similar to that of (3).6

For f, g : N → N ∪ {∞}, we define f ≤ g if and only if f(n) ≤ g(n) for every7

n ∈ N. Thus (f ∨ g)(n) = max{f(n), g(n)} and (f ∧ g)(n) = min{f(n), g(n)} for8

every n ∈ N.9

Theorem 4.4. Let R be a commutative ring and I and J proper ideals of R. Let10

fI(m) = min{n | I is (m, n)-closed} and gI(n) = sup{m | I is (m, n)-closed}. Then11

the following statements are equivalent.12

(1) R(I) ⊆ R(J).13

(2) fJ ≤ fI , i.e. fJ(m) ≤ fI(m) for every positive integer m.14

(3) gI ≤ gJ , i.e. gI(n) ≤ gJ(n) for every positive integer n.15

Proof. It is clear that (1) ⇔ (2) and (2) ⇔ (3).16

The next theorem relates fI , fJ (respectively, gI , gJ) and fI∩J (respectively,17

gI∩J).18

Theorem 4.5. Let R be a commutative ring and I and J proper ideals of R. Let19

fI(m) = min{n | I is (m, n)-closed} and gI(n) = sup{m | I is (m, n)-closed}.20

(1) fI∩J ≤ fI ∨ fJ .21

(2) gI ∧ gJ ≤ gI∩J .22

(3) The following statements are equivalent.23

(a) fI∩J = fI ∨ fJ24

(b) gI∩J = gI ∧ gJ .25

(c) R(I ∩ J) = R(I) ∩R(J).26

Proof. (1) Let m ∈ N, n1 = fI(m), n2 = fJ(m), and n = max{n1, n2}. Then27

(m, n) ∈ R(I) ∩ R(J) ⊆ R(I ∩ J) by Theorem 4.1(2)(9). Thus fI∩J(m) ≤ n =28

(fI ∨ fJ)(m).29

(2) The proof is similar to that of (1).30

(3) (a) ⇒ (c) Suppose that fI∩J = fI ∨ fJ . Then fI , fJ ≤ fI∩J ; so R(I ∩ J) ⊆31

R(I) ∩R(J) by Theorem 4.4. Thus R(I ∩ J) = R(I) ∩R(J) by Theorem 4.1(9).32

(c) ⇒ (a) Suppose that R(I ∩ J) = R(I) ∩ R(J). Then fI , fJ ≤ fI∩J by33

Theorem 4.4; so fI ∨ fJ ≤ fI∩J . Thus fI∩J = fI ∨ fJ since fI∩J ≤ fI ∨ fJ by (1).34

(b) ⇔ (c) The proof is similar to that of (a) ⇔ (c).35
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The next result gives a case where R(I ∩ J) = R(I) ∩ R(J); its “moreover”1

statement generalizes (1) ⇔ (2) of Theorem 3.4. Recall that two nonunits x and y2

in an integral domain R are coprime if xR ∩ yR = xyR.3

Theorem 4.6. Let R be an integral domain and x, y ∈ R coprime elements. Then4

R(xyR) = R(xR ∩ yR) = R(xR) ∩ R(yR). Moreover, fxyR = fxR ∨ fyR and5

gxyR = gxR ∧ gyR.6

Proof. By Theorem 4.1(9), we need only to show that R(xR ∩ yR) ⊆ R(xR) ∩7

R(yR). We first show that R(xR ∩ yR) ⊆ R(xR). Let (m, n) ∈ R(xR ∩ yR), and8

suppose that am ∈ xR for a ∈ R. Then (ay)m ∈ xR ∩ yR = xyR, and thus (ay)n ∈9

xyR ⊆ xR since xyR = xR∩ yR is (m, n)-closed. Hence (ay)n ∈ xR∩ ynR = xynR10

(this follows since x and y are coprime); so an ∈ xR. Thus xR is (m, n)-closed; so11

(m, n) ∈ R(xR). Similarly, (m, n) ∈ R(yR); so R(xR ∩ yR) ⊆ R(xR) ∩ R(yR).12

Hence R(xyR) = R(xR ∩ yR) = R(xR) ∩R(yR).13

The functions fI and gI may be strictly increasing (see Example 4.8(d)). How-14

ever, if R is a commutative Noetherian ring, then fI and gI are eventually constant15

(i.e. gI is eventually ∞) for every proper ideal I of R (cf. Example 2.2(c)).16

Theorem 4.7. Let R be a commutative ring, n a positive integer, and I an17

n-absorbing ideal of R. Then fI(m) ≤ n for every positive integer m. Thus fI18

and gI are eventually constant. In particular, if R is Noetherian, then fI and gI19

are eventually constant for every proper ideal I of R.20

Proof. This follows directly from Theorem 2.1(4). The “in particular” statement21

holds since every proper ideal of a commutative Noetherian ring is an n-absorbing22

ideal for some positive integer n by [1, Theorem 5.3].23

Let R be an integral domain and I = pkR, where p is a prime element of R24

and k is a positive integer. Then Theorem 3.10 computes fI and Theorem 3.1125

computes gI ; the general case for I = pk1
1 · · · pki

i R is given by Theorem 3.12.26

We end this section by computing the fI and gI functions for several examples.27

Example 4.8. (a) Let R be an integral domain and I = p30R for p a prime element28

of R. By Theorem 3.10, one may easily calculate that fI(m) = m for 1 ≤ m ≤ 6,29

fI(7) = 6, fI(8) = fI(9) = 8, fI(m) = 10 for 10 ≤ m ≤ 14, fI(m) = 15 for30

15 ≤ m ≤ 29, and fI(m) = 30 for m ≥ 30. Using Theorem 3.11 (or the fI31

function), one may easily calculate that gI(n) = n for 1 ≤ n ≤ 5, gI(6) =32

gI(7) = 7, gI(8) = gI(9) = 9, gI(n) = 14 for 10 ≤ n ≤ 14, gI(n) = 29 for33

15 ≤ n ≤ 29, and gI(n) = ∞ for n ≥ 30.34

(b) Let R = Z and I = 1260000Z = 2532547Z. Then I = I1 ∩ I2 ∩ I3 ∩ I4, where35

I1 = 25Z, I2 = 32Z, I3 = 54Z, and I4 = 7Z. Let fi = fIi and gi = gIi .36

Then f1 = (1, 2, 3, 3, 5, 5, 5, . . .), f2 = (1, 2, 2, 2, . . .), f3 = (1, 2, 2, 4, 4, 4, . . .),37
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f4 = (1, 1, 1, . . .) and g1 = (1, 2, 4, 4,∞,∞,∞, . . .), g2 = (1,∞,∞,∞, . . .),1

g3 = (1, 3, 3,∞,∞,∞, . . .), g4 = (∞,∞,∞, . . .) by Theorems 3.10 and 3.11,2

respectively. Thus fI = (1, 2, 3, 4, 5, 5, 5, . . .) and gI = (1, 2, 3, 4,∞,∞,∞, . . .)3

by Theorem 3.12.4

(c) Let n be a positive integer, pn be the nth positive prime integer, R = Z,5

and In = 2132 · · · pn
nZ. Then fI1 = (1, 1, 1, . . .), gI1 = (∞,∞,∞, . . .), fIn =6

(1, 2, . . . , n − 1, n, n, n, . . .), and gIn = (1, 2, . . . , n − 1,∞,∞,∞, . . .) for n ≥ 27

by Theorems 3.10–3.12.8

(d) Let R = Q[{Xn}n∈N] and I = ({Xn
n}n∈N) as in Example 2.2(b). Then fI(m) =9

gI(m) = m for every positive integer m since I is (m, n)-closed if and only if10

1 ≤ m ≤ n. Thus fI = gI = (1, 2, 3, . . . , n − 1, n, n + 1, . . .).11

The final example shows that for P a prime ideal (with P 4 � P 3) and p a prime12

element of an integral domain R, the ideals I = p4R and J = P 4 may give distinct13

functions fI , fJ and gI , gJ .14

Example 4.9. (a) Let R be an integral domain and I = p4R, where p is a prime15

element of R. One may easily compute that fI(1) = 1, fI(2) = fI(3) = 2, and16

fI(m) = 4 for m ≥ 4. Thus gI(1) = 1, gI(2) = gI(3) = 3, and gI(n) = ∞ for17

n ≥ 4; so fI = (1, 2, 2, 4, 4, 4, . . .) and gI = (1, 3, 3,∞,∞,∞, . . .).18

(b) Let R = Z[X ] + 3
√

2XZ[ 3
√

2][X ]. Then P = (2, X, 3
√

2X) is a prime ideal of R19

and P 4 � P 3. Note that J = P 4 is not (3, 2)-closed since ( 3
√

2X)3 = 2X3 ∈ J20

and ( 3
√

2X)2 �∈ J . Also, 24 ∈ J and 23 �∈ J ; so J is not (4, 3)-closed. Clearly, J21

is (m, 4)-closed for every positive integer m. Thus fJ(m) = m for 1 ≤ m ≤ 322

and fJ(m) = 4 for m ≥ 4, and hence gJ(n) = n for 1 ≤ n ≤ 3 and gJ(n) = ∞23

for n ≥ 4; so fJ = (1, 2, 3, 4, 4, 4, . . .) and gJ = (1, 2, 3,∞,∞,∞, . . .). Thus24

fI < fJ and gJ < gI , where fI and gI are from (a).25
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